排序方式: 共有6条查询结果,搜索用时 7 毫秒
1
1.
为了平衡钛基复合材料(titanium matrix composites, TMCs)的强度和延展性,通过电泳沉积将氧化石墨烯(graphene oxides, GOs)沉积到Ti箔表面,然后进行放电等离子烧结(spark plasma sintering, SPS)制备了具有层状结构的原位TiC/Ti复合材料,并对复合材料进行冷轧和退火处理从而进一步优化复合材料的综合力学性能。结果表明,烧结过程中,Ti箔表面的GOs与Ti基体反应形成了原位TiC,从而形成了TiC/Ti层状复合材料,随着沉积时间的增加,分布在Ti层之间的TiC的含量增加;复合材料经过冷轧和退火后,退火态材料的晶粒为等轴晶,且TiC仍然保持层状分布特征。沉积时间120 s时,烧结态材料的抗拉强度(UTS)为555 MPa,伸长率(δ)为15%;退火态材料的抗拉强度为568 MPa,伸长率为27%,相比于烧结态材料,退火态材料达到了较好的强塑性匹配。此外,基于微观组织及断裂行为的分析对复合材料的强韧化机制进行了讨论。 相似文献
2.
3.
4.
石墨烯与Ti60合金粉末经过球磨混合后,采用放电等离子烧结法(SPS)制备出石墨烯/Ti60复合材料,并在900℃对其进行热轧加工。采用扫描电子显微镜(SEM)、能谱仪(EDS)、金相显微镜和万能试验机对烧结态与轧制态Ti60合金、石墨烯/Ti60复合材料的微观组织和力学性能进行分析。结果表明:添加质量分数为0.1%的石墨烯能够减小复合材料原始β相尺寸,增大α相尺寸。经热轧加工后,石墨烯/Ti60复合材料在室温、600℃和700℃的抗拉强度分别为1353.0、746.6和391.7 MPa,相比Ti60合金分别提高了9.24%、9.46%和2.99%。 相似文献
5.
石墨烯与Ti60合金粉末经过球磨混合后,采用放电等离子烧结法(SPS)制备出石墨烯/Ti60复合材料,并在900℃对其进行热轧加工。采用扫描电子显微镜(SEM)、能谱仪(EDS)、金相显微镜和万能试验机对烧结态与轧制态Ti60合金、石墨烯/Ti60复合材料的微观组织和力学性能进行分析。结果表明:添加质量分数为0.1%的石墨烯能够减小复合材料原始β相尺寸,增大α相尺寸。经热轧加工后,石墨烯/Ti60复合材料在室温、600℃和700℃的抗拉强度分别为1353.0、746.6和391.7 MPa,相比Ti60合金分别提高了9.24%、9.46%和2.99%。 相似文献
6.
采用放电等离子烧结技术(SPS),制备石墨烯纳米片(GNPs)、硼粉(B)增强TC4钛基复合材料(TiMCs)。利用扫描电镜、拉曼光谱对混合粉末以及烧结后材料的组织进行了研究。利用维氏硬度仪对复合材料进行硬度测试。结果表明:GNPs和B与基体原位反应生成TiC颗粒(TiCp)和TiB晶须(TiBw)构成的非连续网状结构能有效细化晶粒,使晶粒粒径从118.8μm减小到33.1μm。GNPs和B的加入可以显著提高材料的维氏硬度,GNPs/TC4和(GNPs+B)/TC4复合材料的维氏硬度分别为3.91和4.15 GPa,相比于TC4钛合金(3.37 GPa)分别提高了16%和23%。GNPs/TC4和(GNPs+B)/TC4复合材料硬度的提升可以归因于晶界处的硬质颗粒(TiBw和TiCp)的存在。 相似文献
1