首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
化学工业   1篇
金属工艺   2篇
矿业工程   2篇
冶金工业   1篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
本文提出一种从报废锂离子电池正负极混合料中通过优化有氧焙烧-浮选实验条件对正极材料回收的工艺。报废锂离子电池正负极混合料经过有氧焙烧后,通过采用ICP-OES、SEM分析其元素含量以及微观形貌的变化。研究结果表明:电极材料颗粒表面涂覆有机膜的分解和氧化利用有氧焙烧得到解决;我们利用正交试验对浮选分离进行分析,从而得到了其优化后的浮选分离条件为:料浆浓度8%,搅拌速度1600 r/min,药剂量50 g/t,pH值1,通气量0.1 m3/h,得到正极材料的回收率为92.50%。  相似文献   
2.
富锂Li1+xM1-xO2材料的研究主要集中在其结构和电化学性能上,而很少关注其热力学性能。开发具有高能量密度和容量的新型富锂材料取决于这种材料的结构、热力学性质和电化学性质之间的固有关系。对富锂材料Li1+xM1-xO2的热力学性质了解不足,使得新型Li1+xM1-xO2材料的开发和利用受到限制。鉴于Li1+xM1-xO2材料缺乏热力学数据,根据基团贡献方法的原理对LiAlO2进行拆分。基于热力学原理,提出了用于估计LiAlO2的ΔGθf,298、ΔHθf,298Cp的数学模型。采用基团贡献法估算了56种固体无机化合物的ΔGθf,298和ΔHθf,298以及54种固体无机化合物的Cp,298,以检验该模型的可靠性和适用性。利用基团贡献法估算了固体无机化合物的数学模型。利用基团贡献法拟合的基团参数选择的实验数据准确可靠。在结果令人满意的基础上,建立了用于估算3种类型的Li1+xM1-xO2材料的ΔGθf,298Hθf,298Cp的数学模型,并估算了63种常见Li1+xM1-xO2材料的ΔGθf,298、ΔHθf,298Cp,298。  相似文献   
3.
基于基团贡献法对裡离子动力电池正极材料LiNi0.6Co0.2Mn0.2O2、LiNi0.5Co0.2Mn0.3O2、LiNi0.8Co0.1Mn0.1O2和LiNi1/3Co1/3Mn1/3O2的△Hf,298θ和△Gf,298θ进行估算。首先采用基团贡献法对56种固体无机化合物的△Hf,298θ和△Gf,298θ进行估算,估算值与文献值相比,相对误差绝对值都在4%之内。基于基团贡献法首次构建了估算锂离子动力电池正极材料LiNixCOyMnzO2的△Hf,298θ和△Gf,298θ的数学模型,结合XPS实验数据分析结果,对LiNi0.6Co0.2Mn0.2O2、LiNi0.5Co0.2Mn0.3O2、LiNi0.8Co0.1Mn0.1O2和LiNi1/3Co1/3Mn1/3O2正极材料的Hθf,298和ΔGθf,298进行估算,对应正极材料的△Hf,298θ和△Gf,298θ估算值分别为-705.39,-703.90,-695.67,-705.17 kJ·mol^-1和-647.98,-640.04,-631.10,-642.41 kJ·mol^-1。  相似文献   
4.
目前,研究者仍然不清楚机械研磨处理对从废锂离子电池中获得的钴酸锂(LiCoO2)的硫酸化焙烧的影响。对钴酸锂与一水合硫酸氢钠(NaHSO4·H2O)混合物球磨前后的产物进行热重-差热-质谱(TG-DSC-MS)分析,结果表明球磨处理使焙烧环节焙烧温度降低。对钴酸锂与一水合硫酸氢钠混合物采用不同球磨时间处理后再进行焙烧,对焙烧产物进行X射线衍射分析发现,球磨0.5 h后的焙烧产物中出现了LiNaSO4、Na6Co(SO4)4和Na2SO4。对焙烧产物进行扫描电镜-能谱(SEM-EDS)分析,结果表明焙烧产物形貌不规则,呈大小不同的块状,而且颗粒有团聚现象,氧、硫、钠、钴在整个焙烧产物中呈弥散状态均匀分布。  相似文献   
5.
LiFePO4作为正极材料在电动汽车动力电池中获得广泛使用,其报废后再利用理论和工艺是当前研究的热点问题。本文提出了一种采用碱性焙烧联合酸性浸出从LiFePO4中提取Li、Fe的新型回收方法,并对LiFePO4-Na2CO3体系焙烧过程中的物相变化进行了研究。研究结果表明:LiFePO4-Na2CO3作用体系以质量比1:0.67混合在800~950 ℃焙烧,过程是包含化合物分解反应、氧化反应及化合物生成反应等反应类型的复杂反应,焙烧产物的物相组成为Fe2O3、Fe3O4、NaLi2PO4、LiNa5(PO4)2。浸出液使用磷酸溶液(pH=0)、浸出温度50 ℃、浸出时间60 min、液固比为20 mL/g,并用磷酸控制浸出终止pH=1的条件下,焙烧产物中Li的浸出率均大于98%,Fe的浸出率低于9%。  相似文献   
6.
提出一种新的从废锂离子电池中获得LiCoO_2原材料并将其置于含有SO_3气氛的密闭坩埚中进行化学反应。采用模式配合法找出了反应过程的控速环节,用XRD分析了反应产物的物相组成并详细讨论了LiCoO_2在SO_3气氛中焙烧过程的反应机理。结果表明,反应温度是影响LiCoO2转化率的重要因素。LiCoO_2-SO_3反应的控制环节是内扩散型,表观活化能为51.04kJ/mol。产物物相有Li2SO4、Co_3O_4、Li_2Co(SO_4)_2,产物中未发现CoSO_4。反应过程中锂的转变过程为Li_2O→Li_2SO_4→Li_2Co(SO_4)_2,钴的转变过程为CoO_2→Co_3O_4→Li_2Co(SO_4)_2,且Co_3O_4向钴的硫酸盐的转变过程是整个化学反应的限制步骤。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号