首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   0篇
  国内免费   2篇
化学工业   10篇
金属工艺   83篇
机械仪表   5篇
能源动力   3篇
无线电   1篇
一般工业技术   22篇
冶金工业   1篇
自动化技术   1篇
  2017年   1篇
  2014年   3篇
  2013年   16篇
  2012年   8篇
  2011年   12篇
  2010年   7篇
  2009年   6篇
  2008年   14篇
  2007年   9篇
  2006年   14篇
  2005年   4篇
  2004年   10篇
  2003年   3篇
  2002年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
1.
The oxidation behavior of Ti-Si alloys (0.25, 0.5, and 1 Wt. % Si) was investigated between 550 and 700°C; in oxygen by continuous thermogravimetry for a maximum duration of about 500 hr and, in air by daily weighing for durations from a few hundred to several thousand hours. The kinetics results revealed that the presence of silicon leads to a decrease in oxidation rate which is more evident when the temperature is raised and the silicon content is increased. Morphological and structural examinations revealed that silicon modifies the internal architecture of oxide layers when compared with unalloyed titanium; in particular, reduced porosity in the layers is observed. Analysis showed that silicon is uniformly distributed in the oxide layer. However, while part of the silicon is in solid solution in the rutile, some is also precipitated as small crystals ( <1 m at 850°C) of SiO2, of cristobalite structure. The adherence of oxide layers to the metal substrate was measured after cooling of samples; the addition of silicon has been observed to modify, in a manner dependent on its content, the adherence of oxide layers.  相似文献   
2.
Several studies have been undertaken recently to adapt yttria partially stabilized zirconia (YPSZ) thermal barrier coating (TBC) characteristics during their manufacturing process. Thermal spraying implementing laser irradiation appears to be a possibility for modifying the coating morphology. This study aims to present the results of in situ (i.e., simultaneous treatment) and a posteriori (i.e., post-treatment) laser treatments implementing a high-power laser diode. In both cases, the coatings underwent atmospheric plasma spraying (APS). Laser irradiation was achieved using a 3 kW, average-power laser diode exhibiting an 848 nm wavelength. Experiments were performed to reach two goals. First, laser post-treatments aimed at building a map of the laser-processing parameter effects on the coating microstructure to estimate the laser-processing parameters, which seem to be suited to the change into in situ coating remelting. Second, in situ coating remelting aimed at quantifying the involved phenomena. In that case, the coating was treated layer by layer as it was manufactured. The input energy effect was studied by varying the scanning velocity (i.e., between 35 and 60 m/min), and consequently the irradiation time (i.e., between 1.8 and 3.1 ms, respectively). Experiments showed that coating thermal conductivity was lowered by more than 20% and that coating resistance to isothermal shocks was increased very significantly.  相似文献   
3.
Driven by economical and ecological reasons, thermoplastic-based coatings become a potential solution for anti-wear purpose. Two coating design concepts, flame spraying and printing PEEK (poly-ether-ether-ketone)-based coatings on Al substrate, were introduced in this paper. An amorphous PEEK coating was obtained by these two techniques. After being annealed, the coating presents a semi-crystalline structure. The friction and wear behaviors of PEEK-based coatings were investigated by means of ball-on-disc tests. The results show that PEEK coatings exhibit an excellent tribological performance with a relatively low coefficient of friction and wear rate. The semi-crystalline PEEK coating exhibits a lower friction coefficient and wear rate than the amorphous one. The additions of micron-sized particles such as SiC and graphite in PEEK coating can improve significantly the coating wear resistance.  相似文献   
4.
Yttria doped zirconia has been widely used as electrolyte materials for solid oxide fuel cells (SOFC). Plasma spraying is a cost-effective process to deposit YSZ electrolyte. In this study, the 8 mol% Y2O3 stabilized ZrO2 (YSZ) layer was deposited by low pressure plasma spraying (LPPS) and atmospheric plasma spraying (APS) with fused-crushed and agglomerated powders to examine the effect of spray method and particle size on the electrical conductivity and gas permeability of YSZ coating. The microstructure of YSZ coating was characterized by scanning electron microscopy and x-ray diffraction analysis. The results showed that the gas permeability was significantly influenced by powder structure. The gas permeability of YSZ coating deposited by fused-crushed powder is one order lower in magnitude than that by agglomerated powder. Moreover, the gas permeability of YSZ deposited by LPPS is lower than that of APS YSZ. The electrical conductivity of the deposits through thickness direction was measured by potentiostat/galvanostat based on three-electrode assembly approach. The electrical conductivity of YSZ coating deposited by low pressure plasma spraying with fused-crushed powder of small particle size was 0.043 S cm−1 at 100 °C, which is about 20% higher than that of atmospheric plasma spraying YSZ with the same powder. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   
5.
Complex multiscale pore network architecture characterized by multimodal pore size distribution and connectivity develops during the manufacture of ceramic thermal spray coatings from intra- and interlamellar cracks generated when each lamella spreads and solidifies to globular pores resulting from lamella stacking defects. This network significantly affects the coating properties and their in-service behaviors. De Hoff stereological analysis permits quantification of the three-dimensional (3D) distribution of spheroids (i.e., pores) from the determination of their two-dimensional (2D) distribution estimated by image analysis when analyzing the coating structure from a polished plane. Electrochemical impedance spectroscopy electrochemically examines a material surface by frequency variable current and potential and analyzes the complex impedance. When a coating covers the material surface, the electrolyte percolates through the more or less connected pore network to locally passivate the substrate. The resistive and capacitive characteristics of the equivalent electrical circuit will depend upon the connected pore network architecture. Both protocols were implemented to quantify thermal spray coating structures. Al2O3-13TiO2 coatings were atmospherically plasma sprayed using several sets of power parameters, are current intensity, plasma gas total flow rate, and plasma gas composition in order to determine their effects on pore network architecture. Particle characteristics upon impact, especially their related dimensionless numbers, such as Reynolds, Weber, and Sommerfeld criteria, were also determined. Analyses permitted identification of (a) the major effects of power parameters upon pore architecture and (b) the related formation mechanisms. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   
6.
The structural and electronic properties of ZrO2 polymorphs were investigated using density functional theory (DFT). The Kohn–Sham equations were solved by applying the full-potential linearized augmented plane wave (FP-LAPW) method. We used the generalized gradient approximation (GGA) in the Perdew–Wang formalism to the exchange and correlation energy functional. The ground state properties such as lattice parameter, transition pressures, bulk modulus and its pressure derivative as well as the structural phase stability were calculated. The results were compared with previous calculations and experimental data when available. The FP-LAPW method correctly orders the zero temperature energies of all zirconia polymorphs. We have also studied the effect of distortion from the cubic to the tetragonal structure on the basis of charge density calculations. On the other hand, band structure and density of states (DOS), which allow us to discuss the features of orbital mixing, are also given. Our results suggest that the cotunnite structure should be better than the other zirconia phases as gate dielectric material.  相似文献   
7.
Thermal spray process is a technique of coating manufacturing implementing a wide variety of materials and processes. This technique is characterized by up to 150 processing parameters influencing the coating properties. The control of the coating quality is needed through the consideration of a robust methodology that takes into account the parameter interdependencies, the process variability and offers the ability to quantify the processing parameter-process response relationships. The aim of this work is to introduce a new approach based on artificial intelligence responding to these requirements. A detailed procedure is presented considering an artificial neural network (ANN) structure which encodes implicitly the physical phenomena governing the process. The implementation of such a structure was coupled to experimental results of an optic sensor controlling the powder particle fusion state before the coating formation. The optimization steps were discussed and the predicted results were compared to the experimental ones allowing the identification of the control factors.  相似文献   
8.
Plasma sprayed yttria stabilized zirconia coatings were prepared using nanostructured and conventional powders with optimized process parameters for the highest deposition efficiency, the smallest porosity and the highest microhardness. The tribological properties of these coatings against 100C6 steel were then tested with a ball-on-disc arrangement. Results showed that although the friction coefficients of the coatings sprayed using the nanostructured powder were slightly different from those of the coatings sprayed using the conventional powder, the former coatings were more wear resistant than the latter coatings. The wear mechanisms of all the coatings were explained in terms of adhesion-induced spallation and micro-fracturing of lamellae. The improvement in wear resistance of the coatings sprayed using the nanostructured powder could be mainly ascribed to the decrease of micrometer-sized defects such as pores and interlamellar and intralamellar cracks in the coatings.  相似文献   
9.
Magnesium (Mg) and its alloys have a great potential as structural materials due to their beneficial combination of high strength to weight ratio, high thermal conductivity and good machinability. However, few works about Mg coatings fabricated by cold spraying can be found in the literature. Thus, Mg coatings prepared at different main gas temperatures by cold spraying were investigated as well as their microstructure, phase structure, oxygen content and microhardness. The critical velocity of the particle was evaluated through numerical simulations. The particle deformation behavior and bonding mechanism were discussed. The result of the oxygen content measurement shows that the oxygen contents of coatings did not increase compared with that of the feedstock powder. The simulation results show that the critical velocity of Mg particles was in the range from 653 m/s to 677 m/s. The observation of the coating fracture morphology shows that the formation of the coating was due to the intensive plastic deformation and mechanical interlocking. The microhardness of the coating increased with the increase of the main gas temperature from 350 °C to 450 °C due to the decrease of the coating porosity.  相似文献   
10.
The flow of gas mixtures in a dc plasma torch is studied using the CFD PHOENICS (CFD PHOENICS, Berkeley, CA) code. In the model, the cold gas mixture (300 K), initially constituted of 85 vol% Ar and 15 vol% H, is introduced into a power input zone where it takes energy and is ejected in the surrounding atmosphere at constant pressure (105 Pa). The flow is assumed to be in chemical equilibrium. Equations of mass, momentum, and energy are discretized using a control-volume method. The turbulent flow is modeled by a k-ɛ two-equations model for the turbulent kinetic energy and its dissipation rate. Finally, the algebraic coupling equations set is solved by means of the SIMPLEST algorithm, implemented into the CFD code, using a hybrid interpolation scheme. Results concern the effect of the torch power on the ArH2 flow. The phenomenon is analyzed through the evolution of velocity and temperature inside and outside the torch. From these calculations, the effect of ambient gas entrainment by the jet is emphasized and a comparison of the level of entrained gas is made with experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号