ABSTRACTThermochemical treatments like plasma nitriding or surface carburizing are commonly used to enhance surface hardness of steel components. An important difference between these treatments is the temperature at which they are carried out. In the present paper, the surface carburizing was carried out following a recently reported non-isothermal low pressure carburizing (LPC) treatment. In order to gain a comparative view of the effect of different treatments on the microstructure, microhardness, fatigue and impact properties, materials with distinct hardenability and widely used in the industrial production were evaluated. Tests were also carried out using industrially processed components aimed to an application demanding high wear resistance. The microstructural evolution during case hardening was studied by optical and electron microscopy. 相似文献
Macromolecular crystal structure determination can be complicated or brought to a halt by crystal imperfections. These issues motivated us to write up what we affectionately call ‘The Definitive Hitchhiker’s Guide to Pathological Macromolecular Crystals: Lattice Disorders and Modulations’. Perhaps the most challenging imperfections are lattice order–disorder phenomena and positional modulations. Many of these types of crystals have been solved, and progress has been made on the more challenging forms. Diagnostic tools and how to solve many of these problem crystal structures are reviewed. New avenues are provided for approaching the solution of incommensurately modulated crystals. There are a good number of case studies in the literature of lattice order–disorder phenomena and crystallographic modulations that make it timely to write a review. This review concludes with a projected pathway for solving incommensurately modulated crystals, personal views of future directions and needs of the crystallographic community. 相似文献
A tunable, passively Q-switched thulium doped fluoride fibre (TDFF) laser using a reduced-graphene oxide-silver (rGO-Ag) thin film as a saturable absorber (SA) for S band operation is proposed and its efficacy demonstrated. Over a pump power range of 91.4?mW up to 158.6?mW, passively generated Q-switched pulses are observed with repetition rates from 20 to 34.5?kHz and pulse widths from 3.1 to 7.1?µs. The highest pulse energy observed is 101.2?nJ with a signal to noise ratio of ~42?dB. The proposed laser has a tuning range ~52?nm from 1458 to 1510?nm with a tunable bandpass filter (TBPF) introduced into the cavity. 相似文献
This study analysed the influence of the codeposition of SiC particles with different sizes: 50 nm, 500 nm and 5 μm, and the type of bath agitation (stirring or ultrasonic) on the electrocrystallisation of nickel coatings. The composites matrix microstructure was analysed by means of SEM, EBSD and XRD, to evaluate the grain size, crystal orientation, and internal stresses and was benchmarked against pure nickel samples electrodeposited in equivalent conditions. The codeposition of nano- and microsize particles with an approximate content of 0.8 and 4 vol.%, respectively, caused only a minor grain refinement and did not vary the dominant?<?100?>?crystal orientation observed in pure Ni. The internal stress was, however, increased by particles codeposition, up to 104 MPa by nanoparticles and 57 MPa by microparticles, compared to the values observed in pure nickel (41 MPa). The higher codeposition rate (11 vol.%) obtained by the addition of submicron-size particles caused a change in the grain growth from columnar to equiaxial, resulting in deposits with a fully random crystal orientation and pronounced grain refinement. The internal stress was also increased by 800% compared to pure nickel. The ultrasound (US) agitation during the deposition caused grain refinement and a selective particle inclusion prompting a decrease in the content of the particles with the larger particles. The deposits produced under US agitation showed an increase in the internal stresses, with double values compared to stirring. The increase in the deposits microhardness, from 280 HV in pure Ni to 560 HV in Ni/SiC submicron-US, was linked to the microstructural changes and particles content.
The security of future supply with natural resources has to comply with objectives towards a sustainable and responsible development. Resources from the geosphere and recycling material from the technosphere may be grouped in a hierarchy the top of which is made up by fossil energy raw materials and of resources from occurrences which were formed by enrichment processes. The base of the hierarchy is made up by bulk raw materials which occur in unlimited amounts in the crust of the Earth and in the sea water and by waste and residues as potential raw materials. Optimising the efficiency of raw materials takes place if material from a lower level substitutes material from a higher level. Highest efficiency is reached if fossil energy from the top of the hierarchy is substituted or consumption is reduced. 相似文献
The paper reviews the problems encountered with groundwater in surface mining in Scotland. The problems which occur at various stages of the mining process from initial exploration to mine planning and final restoration are referred to. Special consideration is given to mine drainage and pumping methods. 相似文献
Foundation of a university research cluster — Co-operation along the value creation chain from raw materials to components — Evidence of joint performance offers — Utilization of synergies — Integration of Christian Doppler Laboratories — Flexible arrangement of co-operations and networks 相似文献
In November 2000 the Belgian stainless steel producer UGINE & ALZ Belgium nv, a company of the Arcelor Group, awarded VAI a contract for the upgrading and expansion of their steelmaking plant. The overall project included the revamping and supply of new equipment and systems for the steelmaking, continuous casting and environmental protection facilities. An essential part of this ambitious modernization program was the upgrading and expansion of the existing single-strand slab caster, with an output of 600 000 t/a, to a combined single- or twin-strand slab caster with a nominal production capacity of 1.2 million tons — the world’s largest stainless steel slab caster. All upgrading and installation activities had to be carried out within an extremely tight caster shut-down period of 21 days only in order to minimize production losses. This paper discusses the innovative project management solutions implemented in combination with extensive preassembly activities and workshop testing to assure the successful outcome of this project. 相似文献