排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Samir Khamel Nouredine Ouelaa Khaider Bouacha 《Journal of Mechanical Science and Technology》2012,26(11):3605-3616
The main of the present study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (tool life, surface roughness and cutting forces) in finish hard turning of AISI 52100 bearing steel with CBN tool. The cutting forces and surface roughness are measured at the end of useful tool life. The combined effects of the process parameters on performance characteristics are investigated using ANOVA. The composite desirability optimization technique associated with the RSM quadratic models is used as multi-objective optimization approach. The results show that feed rate and cutting speed strongly influence surface roughness and tool life. However, the depth of cut exhibits maximum influence on cutting forces. The proposed experimental and statistical approaches bring reliable methodologies to model, to optimize and to improve the hard turning process. They can be extended efficiently to study other machining processes. 相似文献
2.
3.
Khaider Bouacha Mohamed Athmane Yallese Tarek Mabrouki Jean-François Rigal 《International Journal of Refractory Metals and Hard Materials》2010
The present work concerns an experimental study of hard turning with CBN tool of AISI 52100 bearing steel, hardened at 64 HRC. The main objectives are firstly focused on delimiting the hard turning domain and investigating tool wear and forces behaviour evolution versus variations of workpiece hardness and cutting speed. Secondly, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) are analysed and modeled. The combined effects of the cutting parameters on machining output variables are investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of machining parameters with respect to objectives (surface roughness and cutting force values). Results show how much surface roughness is mainly influenced by feed rate and cutting speed. Also, it is underlined that the thrust force is the highest of cutting force components, and it is highly sensitive to workpiece hardness, negative rake angle and tool wear evolution. Finally, the depth of cut exhibits maximum influence on cutting forces as compared to the feed rate and cutting speed. 相似文献
1