排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
准确的风速预测对风电扩大并网规模具有积极的推动作用。针对风速的波动性和随机性特征,提出了一种基于EMD、GPR和ISTA的短期风速预测模型。通过EMD对原始风速序列进行分解,利用GPR对分解后的序列子集进行一级预测,同时利用ISTA改进GPR的超参数优化选择过程;并将由此生成的误差序列带入到ISTA优化的GPR中进行二级预测,通过所得误差预测值对原始预测值进行校正并得到最终预测结果。案例分析表明,本文所提出的模型在短期风速预测中具有较高的预测精度。 相似文献
2.
针对图像分辨率低的风力机叶片图像会导致故障诊断过程中精度和速度降低等问题,提出了一种基于小波变换、深度可分离卷积和卷积块注意力机制模块的轻量级改进VGG-19模型;使用DB4小波和基于形态学的增强技术来提高风力机叶片图像的质量,然后将VGG-19中的传统卷积层替换为深度可分离卷积层,以减少网络参数的数量并提高训练效率,最后引入卷积注意力机制模块(Convolutional Block Attention Module, CBAM)来提高风力机叶片故障诊断的准确性;研究结果表明:所提模型的准确率为93.91%,与其他传统卷积神经网络(Convolutional Neural Networks,CNN)模型LeNet、AlexNet、GoogleNet、ResNet-50和VGG-19相比分别提高了15.06%、8.57%、3.10%、-1.13%和7.13%;测试时间为每幅图像0.046秒,较传统CNN模型每幅图像分别减少了-0.004秒、-0.002秒、0.006秒、0.015秒和0.010秒的检测时间;该模型结构轻巧,相比于其他传统CNN具有更高的准确性和更快的检测速度。 相似文献
3.
随着我国大规模输电线路网络的发展建设,部分输电线路不可避免地需要穿越地质复杂、易发生滑坡区域,滑坡灾害会严重威胁输电线路的安全稳定运行,针对上述问题,提出一种改进YOLOv5(YOLOv5-BC)深度学习滑坡灾害识别方法,引入BiFPN结构替换PANet提高多层特征融合能力,引入CIoU替换GIoU损失函数,使最终预测框更接近真实框,提升预测精度。实验结果表明,算法在滑坡数据集上较YOLOv5、Faster-RCNN算法准确率均具有显著优势,可以满足实际应用需求。 相似文献
4.
在目前的"新常态"经济模式下,居民电力消费量已经成为中国电力消费增长的主要驱动力。然而其预测精度容易受到社会、经济、环境等多种外部因素的影响,这样会导致预测难度的加大。因此,如何提取这些外部因素中有价值的信息,是预测居民电力消费量成功的关键。针对这个问题,提出了一种基于套索算法和高斯过程回归的中长期居民用电量概率预测模型。首先利用套索算法选取有用的影响因素,从而实现数据降维。其次将被选取的特征当作预测变量,建立了基于高斯过程回归的居民电力消费量概率预测模型。最后以中国居民电力消费量作为算例。结果表明,(1)套索算法可以识别出预测问题中重要的特征,从而能够有效地处理预测问题中的高维数据;(2)高斯过程回归模型可以提高预测精确度,为居民电力消费量的概率预测提供了一种可行思路。 相似文献
1