首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   15篇
化学工业   41篇
金属工艺   1篇
机械仪表   2篇
能源动力   1篇
无线电   2篇
一般工业技术   23篇
冶金工业   7篇
原子能技术   1篇
自动化技术   7篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2006年   1篇
  2005年   1篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有85条查询结果,搜索用时 671 毫秒
1.
Sol-gel prepared Ni-alumina composite materials   总被引:4,自引:0,他引:4  
The microstructure of sol-gel prepared Ni-alumina ceramic-metal composites containing up to 50% Ni has been studied with X-ray diffraction, the scanning electron microscope and the transmission electron microscope. The influence of processing temperature upon the size distribution of Ni was established. It was found that increasing the total amount of Ni increases only the number of micrometre-size Ni inclusions in the alumina, whereas the hot-pressing temperature determines the size distribution of Ni. When temperatures much higher than the melting temperature of Ni are used, a large number of Ni inclusions of the order of 10 nm can be found mainly within alumina grains; only a few are formed in grain boundaries and in triple points. When a temperature close to the melting point is used, there are fewer nanometre-size Ni inclusions and a larger number of Ni inclusions of the order of 100 nm to 1 m. In this case, the large ( 100 nm) and small ( 10 nm) Ni inclusions are found in grain boundaries and triple points.  相似文献   
2.
The effect of a glass enamel coating on the strength and fatigue behavior of float glass was investigated. Commercially available enamel that was comprised of Cu2Cr2O4 pigment particles in a bismuth-zinc borosilicate glass matrix was applied to a soda–lime–silica float glass via screen printing, followed by fusion at elevated temperature. Strengths of the enameled specimens were evaluated in biaxial flexure using a ring-on-ring (ROR) test geometry, and the data were analyzed using a conventional two-parameter Weibull distribution. Enameling was found to significantly degrade the strength of the float glass. There was no statistical difference in the characteristic strengths of samples enameled on the air side (66 MPa) compared with samples enameled on the tin side (61 MPa) of the float glass. Fractographic analysis revealed that the failures in the enameled float glass samples initiated at pores and pigment aggregates in the enamel, whereas failures in float glass samples initiated solely from surface flaws. Dynamic fatigue tests were performed on enameled float glass and indented float glass samples to determine the effect of the enamel on the stress corrosion behavior of the enameled components. There was no statistically significant difference between the stress corrosion exponents for the float glass and enameled float glass specimens.  相似文献   
3.
Water or acid soaking surface treatments have been shown to increase the mechanical strength of soda-lime silicate (SLS) glasses. This increase in strength has traditionally been attributed to effects related to residual stress or changes in fracture resistance. In this work, we report experimental data that cannot be explained based on the existing knowledge of glass surface mechanics. In dry environments, annealed and acid-leached SLS surfaces have comparable crack initiation stress and fracture stress as measured by Hertzian indentation and biaxial bending tests, respectively. Yet, in the presence of humidity, acid-leached surfaces have higher failure stress than the annealed surfaces. This apparent enhancement in the crack resistance of the acid-leached surface of SLS glass in humid environments supports the hypothesis that acid-leached surface chemistry can lower the transport kinetics of molecular water to critical flaws.  相似文献   
4.
5.
It is generally well known that not only the sodium itself, but also the non‐bridging oxygen (NBO) sites associated with sodium ions are largely responsible for the surface reactivity of soda‐lime‐silica (SLS) glass. Thermal poling can modify the distribution of sodium in the subsurface region. In this work, a commercial SLS float glass was thermally poled using nonblocking electrodes in air. The Na+?depleted anode surface and the Na+?gradient cathode surface were characterized using a variety of methods to find the compositional, structural and morphological effects of thermal poling. Of particular significance is the use of nondestructive vibrational spectroscopy methods, which can lead to new and improved understanding of water interactions with sodium and its sites in the glass. It was found that during thermal poling, the Na+?depleted glass network on the anode side undergoes condensation reactions of NBO sites accompanied by the increase in concentrations of silanol (SiOH) groups and molecular water species. In contrast, silanol and water species do not increase and the silicate network change is negligible in the Na+?gradient cathode side. Vibrational sum frequency generation (SFG) spectroscopy analysis revealed the difference in distributions of hydrous species in the Na+?depleted and Na+?gradient surfaces. The structural information of the thermally‐poled surfaces provides critical insights needed to understand the mechanical and mechanochemical properties of the Na+?concentration modified SLS glass surfaces reported in the Part 2 companion paper.  相似文献   
6.
The effect of alkaline‐earth ions on Na transport in aluminosilicate glasses was studied by measuring ionic conductivity for a systematic compositional series of Na2O–RO–Al2O3–SiO2 glasses (R=Mg, Ca, Sr, Ba). The Na transport in aluminosilicate glass could be affected by compositional changes in aluminum coordination and nonbridging oxygen as well as physical properties such as dielectric constant, shear modulus, and ionic packing factor. Through careful experimental designs and measurements, the main determinants among these parameters were identified. 27Al MAS‐NMR indicated that all aluminum species contained in these glasses are four‐coordinated. The activation energy for ion conductivity decreased with increasing aluminum content and decreasing ionic radii of the alkaline‐earth ion in the region where [Al] < [Na]. When the aluminum content exceeded the sodium content ([Al] > [Na]), the composition dependence of the activation energy depended on the specific alkaline earth. These results are explained based on variations in free volume and dielectric constant caused by structural changes around the AlO4 charge compensation sites. These structure changes occur in response to the smaller size and higher field strength of the alkaline‐earth ions, and are most prevalent in the compositions which require bridging of two AlO4 sites by the alkaline‐earth ion for charge compensation.  相似文献   
7.
We investigate heat transfer characteristics of a turbulent swept flow in a channel with a wire placed over one of its walls using direct numerical simulation. This geometry is a model of the flow through the wire-wrapped fuel pins, the heat exchanger, typical of many civil nuclear reactor designs. The swept flow configuration generates a recirculation bubble with net mean axial flow. A constant inward heat flux from the walls of the channel is applied. A key aspect of this flow is the presence of a high temperature region at the contact line between the wire and the channel wall, due to thermal confinement (stagnation). We analyze the variation of the temperature in the recirculation bubble at Reynolds number based on the bulk velocity along the wire-axis direction and the channel half height of 5400. Four cases are simulated with different flowrates transverse to the wire-axis direction. This configuration is topologically similar to backward-facing steps or slots with swept flow, except that the dominant flow is along the obstacle axis in the present study and the crossflow is smaller than the axial flow, i.e., the sweep angle is large. The temperature field is simulated at three different Prandtl numbers: 10?2, 10?1 and 1. The lower value of Prandtl number is characteristic of experimental high-temperature reactors that use a molten salt as coolant while the high value is typical of gas (or water vapor) heat exchangers. In addition, mean temperature, turbulence statistics, instantaneous wall temperature distribution and Nusselt number variation are investigated. The peak Nusselt number occurs close to the reattachment location, on the lee side of the wire, and is about 50–60% higher compared to the case without crossflow. The high temperature region follows the growth of the recirculation bubble which increases by about 65% from the lowest to highest amount of crossflow. Particular attention is devoted to the temperature distribution on the walls of the channel and the surface of the wire. The behavior of the heat-flux across the mean dividing streamline of the recirculation bubble is investigated to quantify the local heat transfer rates occurring in this region.  相似文献   
8.
The CDK4/6 inhibitors (CDKi) palbociclib, ribociclib, and abemaciclib are currently approved in combination with anti-estrogen therapy for the treatment of advanced and/or metastatic hormone receptor-positive/HER2-neu-negative breast cancer patients. Given the high incidence of bone metastases in this population, we investigated and compared the potential effects of palbociclib, ribociclib, and abemaciclib on the breast cancer bone microenvironment. Primary osteoclasts (OCs) and osteoblasts (OBs) were obtained from human monocyte and mesenchymal stem cells, respectively. OC function was evaluated by tartrate-resistant acid phosphatase assay and real-time PCR; OB activity was assessed by an alizarin red assay. OB/breast cancer co-culture models were generated via the seeding of MCF-7 cells on a layer of OBs, and tumor cell proliferation was analyzed using flow cytometry. Here, we showed that ribociclib, palbociclib, and abemaciclib exerted similar inhibitory effects on the OC differentiation and expression of bone resorption markers without affecting OC viability. On the other hand, the three CDKi did not affect the ability of OB to produce bone matrix, even if the higher doses of palbociclib and abemaciclib reduced the OB viability. In OB/MCF-7 co-culture models, palbociclib demonstrated a lower anti-tumor effect than ribociclib and abemaciclib. Overall, our results revealed the direct effects of CDKi on the tumor bone microenvironment, highlighting differences potentially relevant for clinical practice.  相似文献   
9.
Alkali-free glass as a high energy density dielectric material   总被引:3,自引:0,他引:3  
One of the greatest challenges in the development of new high energy density materials is to increase dielectric permittivity while maintaining high breakdown strength. The dielectric breakdown behavior of an alkali-free barium boroaluminosilicate glass is shown to have remarkably high DC dielectric breakdown strength (12 MV/cm) and reasonably high permittivity (~ 6), equating to energy densities in excess of 35 J/cm3. This behavior is attributed to highly polarizable Ba ions enhancing the real part of complex permittivity, the low loss due to the alkali-free composition, and the substantially defect-free quality of the glass and its surfaces. To our knowledge, this is the highest breakdown strength reported for a bulk glass, and rivals the breakdown strength more typically observed in pristine thin films of SiO2. These findings indicate that alkali-free multicomponent glasses may be strong candidates for next-generation high energy density storage capacitors for portable or pulsed power applications.  相似文献   
10.
Single-walled carbon nanotubes (CNTs) convert absorbed near infrared (NIR) light into heat. The use of CNTs in the NIR-mediated photothermal ablation of tumor cells is attractive because the penetration of NIR light through normal tissues is optimal and the side effects are minimal. Targeted thermal ablation with minimal collateral damage can be achieved by using CNTs attached to tumor-specific monoclonal antibodies (MAbs). However, the role that the cellular internalization of CNTs plays in the subsequent sensitivity of the target cells to NIR-mediated photothermal ablation remains undefined. To address this issue, we used CNTs covalently coupled to an anti-Her2 or a control MAb and tested their ability to bind, internalize, and photothermally ablate Her2(+) but not Her2(-) breast cancer cell lines. Using flow cytometry, immunofluorescence, and confocal Raman microscopy, we observed the gradual time-dependent receptor-mediated endocytosis of anti-Her2-CNTs whereas a control MAb-CNT conjugate did not bind to the cells. Most importantly, the Her2(+) cells that internalized the MAb-CNTs were more sensitive to NIR-mediated photothermal damage than cells that could bind to, but not internalize the MAb-CNTs. These results suggest that both the targeting and internalization of MAb-CNTs might result in the most effective thermal ablation of tumor cells following their exposure to NIR light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号