The cracking behaviour of X-70 pipeline steel in near-neutral pH solutions was studied under different modes of cyclic loading. The crack propagation process of X-70 pipeline steel under low frequency cyclic loading condition was controlled mainly by stress corrosion cracking (SCC) mechanism. Under mixed-mode cyclic loading, both higher tensile stress and shear stress made cracks easier to propagate. Applied cathodic potentials and high content of carbon dioxide in solutions also promoted the propagation of cracks. The propagation directions of cracks were different under different cyclic loading conditions. Under mode I (pure tensile stress) cyclic loading condition, cracks were straight and perpendicular to the tensile stress axis, while under mixed-mode I/Ill (tensile/shear stress) cyclic loading, cracks were sinuous and did not propagate in the direction perpendicular to the main tensile stress axis. Under the mixed-mode cyclic loading, cracks were much easier to propagate, suggesting that shear stress intensified the role of tensile stress. In addition, shear stress promoted the interaction between cracks, resulting in easier coalescence of cracks. 相似文献
Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200–210 °C using a facile
and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when
used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA·h·g−1 after 21 cycles at a rate of 20 mA·g−1. Furthermore, after the nanotubes were calcined (600 °C, 4 h) or reduced (180 °C, 10 h), the corresponding discharge capacities
increased to 277.2 mA·h·g−1 and 308.5 mA·h·g−1, respectively.
相似文献
K416B Ni-based superalloy with high W content has good high temperature properties and low cost, which has a great development potential. To investigate the room temperature tensile property and the deformation feature of K416B superalloy, tensile testing at room temperature was carried out, and optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the deformation and damage mechanisms. Results show that the main room temperature tensile deformation features of the K416B nickel-based superalloy are dislocations slipping in the matrix and shearing into γ′ phase. The <110> super-dislocations shearing into γ′ phase can form the anti-phase boundary two coupled (a/2)<110> partial-dislocations or decompose into the configuration of two (a/3)<112> partial dislocations plus stacking fault. In the later stage of tensile testing, the slip-lines with different orientations are activated in the grain, causing the stress concentration in the regions of block carbide or the porosity, and cracks initiate and propagate along these regions.