首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
建筑科学   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.

Existing buildings constitute a large portion of the UK’s housing stock. Refurbishment of existing buildings can, therefore, have an important role in achieving the UK government’s CO2 reduction targets. While building regulations and rating frameworks mainly focus on the improvements of the operational performance of buildings, Life Cycle Analysis is considered to be a more appropriate framework to account for long–term CO2 savings. This study evaluates a range of retrofit approaches (simple, medium, and deep), in terms of Life Cycle Carbon Footprint applied on a terraced house—one of the most common housing archetypes in London. The initial state of the original building has also been examined assuming three initial states (never refurbished, refurbished in compliance with the 1976 and with the 2000 building regulations). Results showed that for all initial state scenarios, deep retrofit achieved the lowest life cycle carbon emissions, in absolute figures, compared to the simple and medium retrofits. Simple retrofit packages, on the other hand, achieved quick and significant improvements, especially in buildings with poor initial thermal conditions. The study also indicated that retrofit packages applied on highly efficient building fabrics result in longer carbon payback time periods. The study recommends establishing a ‘staggered’ retrofitting approach, which pushes for ‘older building first’ and ‘simple retrofit packages first’, as these gain quick CO2 savings. Deep retrofit packages and treatment of relatively new buildings should be implemented at a later stage, to push buildings further to Zero–Carbon target.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号