排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
2.
3.
为快速获取及评价混凝土的综合性能,选取影响混凝土综合性能的6个主要因素为输入数据,混凝土综合性能(28 d强度、坍落扩展度及表观密度)为输出数据,建立基于相关向量机(RVM)的混凝土综合性能预测模型,对14组学习样本进行拟合训练,并对其余5组预测样本进行预测。结果表明:在相同的样本条件下,与BP神经网络模型进行对比,RVM模型预测精度更高,离散性更小;同时,与实际值相比,RVM模型预测的混凝土综合性能指标的平均相对误差均明显小于BP神经网络模型预测得到的平均相对误差,进一步验证了RVM模型对混凝土综合性能预测的可靠性,具有较好的推广价值。 相似文献
4.
为解决露天矿山爆破开采过程中岩石爆破粒径大小难以获取的问题,提出一种基于主成分分析法(PCA)及相关向量机(RVM)相结合的矿山岩石爆破粒径预测模型.该模型利用PCA对样本数据进行降维处理,选取出4个相互独立的主成分变量,并借助RVM构建主成分与爆破粒径之间的非线性映射关系,从而建立预测模型.将该模型应用于工程实例,并与BP神经网络和LM双隐含层模型进行对比.结果表明,在相同学习样本下,PCA-RVM模型预测结果与实际值更加接近,在平均相对误差和均方差上远小于另两种模型. 相似文献
5.
调蓄水位与其影响因素之间存在着复杂的非线性关系,针对BP神经网络模型的局限性,选取泵站开启时间差、起调水位、入流量、出流量作为主要影响因素,建立一种基于相关向量机(relevance vector machine, RVM)的调水工程调蓄水位预测模型。通过实例应用表明在相同样本情况下与BP神经网络模型预测结果相比,RVM预测模型均方根误差和平均绝对误差均小于BP神经网络预测模型的预测结果,说明在调水工程调蓄水位的预测中,RVM预测模型具有精度高、离散性小等优点,为调水工程调蓄水位的预测提供了一条新途径。 相似文献
1