排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
针对边坡变形量预测难的问题, 将小波分析与BP神经网络预测相结合, 采用小波变换对边坡变形监测数据进行信噪分离, 进而消除观测误差, 通过BP神经网络预测模型BPANN对处理后数据进行再处理, 对边坡变形量以及变形趋势进行预测。进而提出了一种基于小波变换和BPANN模型对露天矿边坡变形监测数据进行处理分析的方法, 并在鞍山某露天矿进行了实际应用。实例结果表明: 利用小波去噪与BPANN模型预测的监测点精度达到3 mm, 满足二等变形监测的要求, 数据处理简便, 在露天矿边坡变形监测数据的消噪与预测中具有实际应用价值。 相似文献
1