ABSTRACTThermochemical treatments like plasma nitriding or surface carburizing are commonly used to enhance surface hardness of steel components. An important difference between these treatments is the temperature at which they are carried out. In the present paper, the surface carburizing was carried out following a recently reported non-isothermal low pressure carburizing (LPC) treatment. In order to gain a comparative view of the effect of different treatments on the microstructure, microhardness, fatigue and impact properties, materials with distinct hardenability and widely used in the industrial production were evaluated. Tests were also carried out using industrially processed components aimed to an application demanding high wear resistance. The microstructural evolution during case hardening was studied by optical and electron microscopy. 相似文献
ABSTRACTIn India, of late, micro-irrigation has received considerable policy focus. However, as of 2017, only about 10% of the potential area is under micro-irrigation. The present study analyzes the pattern and equity issues of distribution of micro-irrigation in India and identifies the potential correlates. The regression analysis reveals that the stage of groundwater development and agro-climatic differences significantly influence the spread of micro-irrigation. The relatively low spread of micro-irrigation in states with over-exploited groundwater needs attention. Overall, the study points to the need to revamp the current micro-irrigation development programmes, which focus excessively on subsidy. 相似文献
ABSTRACTOccupancy patterns are necessary to estimate energy demand and evaluate thermal comfort in households. Because of this, many European countries are developing representative domestic schedules to replace outdated criteria. This paper evaluates the state of knowledge of UK domestic occupancy patterns and develops new domestic occupancy profiles for England. The presented research (1) characterizes methods for collecting occupancy data and inferring patterns; (2) identifies and assesses the quality of categories of occupancy patterns used in building simulation; and (3) develops updated occupancy profiles. A systematic scoping review identified social and monitoring surveys as the most deployed data-collection methods. A systematic literature review also established that the occupancy categories most frequently used in UK building simulation are (a) a family with dependent children where the parents work full time; and (b) a retired elderly couple who spend most of their time indoors. The interview sample from the English Housing Survey 2014–15 was used to map household typologies. Results show that categories (a) and (b) combined amount to only 19% of England’s households, which suggest models are over-reliant on these groups. Considering this result, the paper develops occupancy patterns for England derived from 2015 UK Time Use Survey diaries for each household typology previously identified. 相似文献
This study aimed to evaluate the influence of plasma treatment time, bacterial exposure time to PAW and bacterial species on the inactivation efficacy of plasma-activated water (PAW), with additional investigation of the inactivation mechanisms of PAW. Six bacterial species, including Listeria innocua, Staphyloccus aureus, Escherichia coli, Pseudomonas fluorescens, Shewanella putrefaciens and Aeromonas hydrophila were selected as the representative bacteria. The initial bacterial concentration was around 7 log CFU ml−1 after mixing with PAW, and the inactivation efficacy was measured after different exposure times during the 4 °C storage. Scanning electron microscopy (SEM) images of the bacteria after PAW treatment were carried out to inspect the cell structure damage, and physicochemical properties of PAW, including pH, conductivity and long-living reactive species of H2O2, , and , were examined. The results showed that the inactivation efficacy of PAW was positively correlated with plasma treatment time and bacterial exposure time, and for the species examined in this study, the Gram-negative species were more sensitive to PAW than the Gram-positive species. Cell structure damage, including shrinkage, distortion, or holes, was observed after PAW treatment. The pH of PAW was acidified to 2.5–2.9, and conductivity was significantly increased to 518.0 μs cm−1. and H2O2 were reduced during the 48 h storage, while an increased concentration was observed for . This study demonstrated that the processing parameters of plasma treatment time, exposure time and characteristics of bacteria can significantly affect the inactivation efficacy of PAW. 相似文献
The results of a system analysis of the efficiency of nitrous oxide(N_2O) as a propellant component for small space vehicles(SSV) were presented. A criterion for mass efficiency of the SSV propulsion system(PS) is determined. The current global state-of-the-art of SSV PSs is shown. The application field of nitrous oxide in SSV PSs is calculated and mass efficiency of N_2O application is quantitatively determined. An overview of physical and chemical as well as operational properties of nitrous oxide as a promising, non-toxic component of rocket propellant is provided. Main physical and chemical constants of gaseous and liquid nitrous oxide; chemical properties of N_2O, thermal stability of N_2O, catalytic decomposition of N_2O, a mechanism of decomposition of N_2O, catalysts for decomposition of N_2O, ballast additives to N_2O, application of nitrous oxide, nitrous oxide as a rocket propellant, production of nitrous oxide, toxicity of nitrous oxide, fire hazard of N_2O, requirements to equipment when handling N_2O; storage and transportation of N_2O are considered. It is demonstrated that nitrous oxide is a chemical compound meeting the requirements to rocket propellants, including those related to the environmental friendliness of propellants. With 75 references. 相似文献
ABSTRACT An in situ hot press bonding technology has been developed to clad aluminium on magnesium. Followed by regular hot rolling, magnesium sheets, covered by ductile and corrosion-resistant aluminium without detectable oxides in the interface, are produced. The new technology requires no welding, vacuum, protective atmosphere or barrier layer, and it makes good interfacial strength and rollability. Aluminium–magnesium intermetallic phases are formed along the clad–core interface at elevated temperatures. They are not detrimental under compression but may cause clad-core delamination in tensile strain. However, the tensile failure is more dependent on the formability of magnesium core than on the strength of interface. 相似文献
A tunable, passively Q-switched thulium doped fluoride fibre (TDFF) laser using a reduced-graphene oxide-silver (rGO-Ag) thin film as a saturable absorber (SA) for S band operation is proposed and its efficacy demonstrated. Over a pump power range of 91.4?mW up to 158.6?mW, passively generated Q-switched pulses are observed with repetition rates from 20 to 34.5?kHz and pulse widths from 3.1 to 7.1?µs. The highest pulse energy observed is 101.2?nJ with a signal to noise ratio of ~42?dB. The proposed laser has a tuning range ~52?nm from 1458 to 1510?nm with a tunable bandpass filter (TBPF) introduced into the cavity. 相似文献
In this article, we develop proportional, fractional-integral, and derivative () controllers for the regulation and tracking problems of nonlinear systems. The analytic results are obtained by extending the passivity-based approach to include fractional operators. Robustness under parametric uncertainty is dealt with by a combination with an adaptive scheme. It is also shown their robustness under additive noise and their robustness under uncertainty in the derivation order. The advantages in the controlled system performance and in the control energy consumption in comparison to classic PI and proportional integral derivative controllers are illustrated for the quadratic boost converter and a benchmark system in the literature. 相似文献
AbstractIn the present work, we compare the structure and transport properties of carbon nanohorns (CNHs) synthesized by arc evaporation of graphite alone and with the addition of some portion of toluene. The materials have been investigated using transmission electron microscopy, Raman and infrared spectroscopies, thermogravimetric and BET analyses. The addition of a small amount of toluene during the evaporation of graphitic rod increases the length of CNHs, affects their hierarchical arrangement in aggregates and results in surface functionalization. All these features significantly enhance the conductivity of CNHs obtained with toluene additive in comparison with the pristine CNHs. 相似文献
Different synthesis routes for carbon nitride materials (CN) and the resulting products were compared to study the photocatalytic activity (pollutant degradation) in dependence on structure and properties. The CN materials were synthesized by thermal decomposition of dicyandiamide in air and under argon as well as in sealed ampoules with or without the use of a salt melt. The as-prepared materials were characterized by IR spectroscopy, nitrogen adsorption measurement, solid-state NMR spectroscopy, diffuse reflectance UV–Vis spectroscopy, elemental analysis and powder X-ray diffraction (PXRD). The surface polarity of the CN materials was estimated by adsorption of the dicyano-bis(1,10-phenanthroline)-iron(II) complex, which allows an evaluation of the degree of condensation. The CN materials were tested with regard to the photocatalytic degradation of rhodamine B (RhB). It is shown that the photocatalytic activity increases with higher surface polarity. Promising CN materials with high RhB degradation of 85% within 25 min and high surface polarity of 0.89 were selected for an immobilization approach to obtain coatings on a silicone substrate using a high-volume low-pressure (HVLP) spray coating technique. To study the photocatalytic activity of the catalyst coatings, the degradation rates of an aqueous RhB solution and solutions of organic pollutants such as triclosan and ethinyl estradiol were examined. Pollutants are decomposed with up to 63% of the initial concentration. Xenon lamps and different LEDs were used as light sources for comparison. Particularly high degradation efficiencies were obtained using LEDs, and the degradation rates are increased by adjusting the emission spectrum of the lamp to the pollutant and absorption edge of the catalyst, which results in a 40 times higher degradation efficiencies of LEDs compared to a Xe lamp.