The adverse effect of nitrate on the phosphate release rate in the anaerobic phase was observed and was hardly explainable with conventional EBPR process models. Four possible mechanisms were proposed including substrate competition, reduced fermentation, parallel reaction and sequential reaction. Batch experiments were designed and conducted to identify the dominant mechanism. Results showed that the sequential reaction was the only possible mechanism where only denitrification occurred if any nitrate existed in the anaerobic phase. Then the phosphate release following after the nitrate was completely removed. Nitrate inhibition effect was added into the PHA storage rate to incorporate the sequential reaction in the conventional ASM3 plus EAWAG bio-P module (ASM3 + P). Nitrate inhibition coefficient, K(I,NO,PAO) was found to be as low as 0.05 mg/L. This correlated well with experimental observation where no also meant that the anaerobic compartment of a continuous flow reactor could be seriously affected by the residual nitrate contained in the sludge recycle flow. This phenomenon caused overestimation of the phosphate uptake rate and consequently underestimation of PO4(3-) -P concentration. This problem was resolved by incorporation of a nitrate inhibition term in the ASM3 + P for more accurate simulation of the EBPR process. 相似文献
Optically preamplified receiver performance according to the vestigial sideband (VSB) filtering has been numerically investigated for 40-Gb/s optical signals modulated with nonreturn-to-zero, duobinary nonreturn-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed RZ, and duobinary carrier-suppressed RZ formats. The VSB filtering enables the spectral widths of NRZ, duobinary NRZ, and RZ signals to be reduced without severe power penalties at the receiver. On the other hand, carrier-suppressed RZ and duobinary carrier-suppressed RZ signals have no large advantages over VSB filtering because of the characteristics of their signals. Our results suggest that RZ signals are the most suitable modulation format for VSB filtering, without considering the filter loss, because of the tolerance of the intersymbol interference and a large spectral width. However, duobinary NRZ signals are the most suitable modulation format for VSB filtering, considering the filter loss, because of their narrow spectral width. 相似文献
The aim of this study was to evaluate the use of total coliforms (TC) and faecal coliforms (FC) using a membrane filtration method for precise monitoring of faecal pollution in Korean surface water. The samples were collected in Korea from both main rivers and their tributaries. Presumptive TC * FC were enumerated. The ratios of presumptive FC to TC were not constant, but varied widely, and TC were difficult to enumerate because of overgrowth by background colonies. For FC this was not the case. Seven hundred and three purified strains of presumptive TC * FC and their background colonies were biotyped using API 20E. Among 272 presumptive TC, non-faecal related species, Aeromonas hydrophila dominated (34.6%) and E. coli accounted for only 5.1%. In contrast, E. coli made up 89% of the 209 presumptive FC. Furthermore, of 164 background colonies on Endo Agar LES, 54.9% was A. hydrophila, while background colonies on m-FC Agar were few (58 strains), and despite their atypical colony appearance, most of them were biotyped as enteric bacteria. These results reveal that the detection of FC rather than TC using m-FC Agar is more appropriate for faecal pollution monitoring in eutrophicated surface water located in a temperate region. 相似文献
The hydrogen annealing process has been used to improve surface roughness of the Si-fin in CMOS FinFETs for the first time. Hydrogen annealing was performed after Si-fin etch and before gate oxidation. As a result, increased saturation current with a lowered threshold voltage and a decreased low-frequency noise level over the entire range of drain current have been attained. The low-frequency noise characteristics indicate that the oxide trap density is reduced by a factor of 3 due to annealing. These results suggest that hydrogen annealing is very effective for improving device performance and for attaining a high-quality surface of the etched Si-fin. 相似文献
The leakage mechanism in p+/n shallow junctions fabricated using Co silicidation and shallow trench isolation processes has been investigated using transmission electron microscopy (TEM) combined with selective chemical etching. TEM and TSUPREM-4 simulation results show that dopant profiles bend upward near the edge of the active region. The formation of the abnormal profile is attributed to transient enhanced diffusion induced by source/drain implantation. Based on the TEM and simulation results, it is suggested that the shallower junctions formed near the active edge can serve as a source for leakage current in the silicided p+ /n shallow junctions 相似文献
A CEC-funded project has been performed to tackle the problem of producing an advanced Life Monitoring System (LMS) which would calculate the creep and fatigue damage experienced by high temperature pipework components. Four areas were identified where existing Life Monitoring System technology could be improved:
1. 1. the inclusion of creep relaxation
2. 2. the inclusion of external loads on components
3. 3. a more accurate method of calculating thermal stresses due to temperature transients
4. 4. the inclusion of high cycle fatigue terms.
The creep relaxation problem was solved using stress reduction factors in an analytical in-elastic stress calculation. The stress reduction factors were produced for a number of common geometries and materials by means of non-linear finite element analysis. External loads were catered for by producing influence coefficients from in-elastic analysis of the particular piping system and using them to calculate bending moments at critical positions on the pipework from load and displacement measurements made at the convenient points at the pipework. The thermal stress problem was solved by producing a completely new solution based on Green's Function and Fast Fourier transforms. This allowed the thermal stress in a complex component to be calculated from simple non-intrusive thermocouple measurements made on the outside of the component. The high-cycle fatigue problem was dealt with precalculating the fatigue damage associated with standard transients and adding this damage to cumulative total when a transient occurred.
The site testing provided good practical experience and showed up problems which would not otherwise have been detected. 相似文献
This paper demonstrates the use of computer simulation for topological design and performance engineering of transparent wavelength-division multiplexing metropolitan-area networks. Engineering of these networks involves the study of various transport-layer impairments such as amplifier noise, component ripple, chirp/dispersion, optical crosstalk, waveform distortion due to filter concatenation, fiber nonlinearities, and polarization effects. A computer simulation methodology composed of three main simulation steps is derived and implemented. This methodology obtains performance estimations by applying efficient wavelength-domain simulations on the entire network topology, followed by time-/frequency-domain simulations on selected paths of the network and finally Q-budgeting on an identified worst case path. The above technique provides an efficient tool for topological design and network performance engineering. Accurate simulation models are presented for each of the performance impairments, and the computer simulation methodology is used for the design and engineering of a number of actual metro network architectures 相似文献
A 0.9 V third-order double-sampled delta-sigma audio ADC is presented. A new method using a combination of a switched-RC technique and a floating switched-capacitor double-sampling configuration enabled low-voltage operation without clock boosting or bootstrapping. A three-level quantizer with simple dynamic element matching was used to improve linearity. The prototype IC implemented in a 0.13 CMOS process achieves 92 dB DR, 91 dB SNR and 89 dB SNDR in a 24 kHz audio signal bandwidth, while consuming 1.5 mW from a 0.9 V supply. The prototype operates from 0.65 V to 1.5 V supply with minimal performance degradation. 相似文献