Salt spray corrosion test was carried out on 6061 aluminum alloy, and quasi-static tensile test at room temperature was carried out on the sample with universal testing machine. The effect of salt spray corrosion on the mechanical properties of 6061 aluminum alloy was studied by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and electrochemistry. The corrosion rate of 6061 aluminum alloy was quantitatively characterized by different corrosion parameters. It was found that local corrosion of 6061 aluminum alloy occurred in salt spray environment, mainly pitting corrosion and intergranular corrosion. With the increase of corrosion time, the polarization resistance of 6061 aluminum alloy decreases, and the corrosion rate significantly increases. The average corrosion rate and the maximum corrosion rate of 6061 aluminum alloy were characterized by corrosion weight loss and corrosion pit depth. And they can be transformed into each other. The mechanical properties of 6061 aluminum alloy were mainly affected by the depth of corrosion pit. With the increase of corrosion time, the tensile strength and fracture strain decreased, resulting in poor plasticity of the sample. At the same time, the change of elongation of 6061 aluminum alloy can be accurately predicted by the depth of corrosion pit. 相似文献
AbstractIn the present work, we compare the structure and transport properties of carbon nanohorns (CNHs) synthesized by arc evaporation of graphite alone and with the addition of some portion of toluene. The materials have been investigated using transmission electron microscopy, Raman and infrared spectroscopies, thermogravimetric and BET analyses. The addition of a small amount of toluene during the evaporation of graphitic rod increases the length of CNHs, affects their hierarchical arrangement in aggregates and results in surface functionalization. All these features significantly enhance the conductivity of CNHs obtained with toluene additive in comparison with the pristine CNHs. 相似文献
This study analysed the influence of the codeposition of SiC particles with different sizes: 50 nm, 500 nm and 5 μm, and the type of bath agitation (stirring or ultrasonic) on the electrocrystallisation of nickel coatings. The composites matrix microstructure was analysed by means of SEM, EBSD and XRD, to evaluate the grain size, crystal orientation, and internal stresses and was benchmarked against pure nickel samples electrodeposited in equivalent conditions. The codeposition of nano- and microsize particles with an approximate content of 0.8 and 4 vol.%, respectively, caused only a minor grain refinement and did not vary the dominant?<?100?>?crystal orientation observed in pure Ni. The internal stress was, however, increased by particles codeposition, up to 104 MPa by nanoparticles and 57 MPa by microparticles, compared to the values observed in pure nickel (41 MPa). The higher codeposition rate (11 vol.%) obtained by the addition of submicron-size particles caused a change in the grain growth from columnar to equiaxial, resulting in deposits with a fully random crystal orientation and pronounced grain refinement. The internal stress was also increased by 800% compared to pure nickel. The ultrasound (US) agitation during the deposition caused grain refinement and a selective particle inclusion prompting a decrease in the content of the particles with the larger particles. The deposits produced under US agitation showed an increase in the internal stresses, with double values compared to stirring. The increase in the deposits microhardness, from 280 HV in pure Ni to 560 HV in Ni/SiC submicron-US, was linked to the microstructural changes and particles content.
In this paper, a novel compact semi-circular slot (SCS) 2 × 2 MIMO antenna is presented for 5G NR sub-6 GHz applications with high isolation. The proposed antenna consists of a semi-circular slot in ground plane, U-shaped stub, and 50-ohm microstrip feed line. The novelty of this paper are the Semi-Circular Slot acts a radiator, the port isolation is enhanced using a simple conductor strip as a neutralization line, very compact in size, low ECC, and good impedance matching. The overall size of the proposed SCS MIMO antenna is 16 mm x 21 mm, and FR4 substrate is used with thickness of 1.6 mm. The two SCS antenna elements are separated by edge-to-edge distance of 1mm (\(=0.019\lambda _{0}\)). The proposed compact MIMO antenna design is simulated using Ansys HFSS. To validate SCS MIMO antenna, a prototype was fabricated and tested. The measured results are attained at 5.5 GHz with isolation greater than 25dB, impedance bandwidth (S11\(<-10\) dB) covers from 5.10 GHz to 5.80 GHz with return loss of ? 39.5 dB. The MIMO antenna parameters, ECC, CCL, TARC, and MEG are studied, and the values are obtained within acceptable limits. The measured and simulated antenna results are almost similar. This compact MIMO antenna is suitable for 5G communications in sub-6 GHz wifi-5 band applications.
Mineral resources are fundamental to human well being and the development of the European society. Of particular importance are the construction minerals, namely sand and gravel, which are the basis of infrastructure development. More than 3 billion tonnes of sand, gravel (and crushed stone) are produced annually to meet the demands of the European building industry. Mineral extraction in Europe has become more difficult over the years due to increasing concerns for the environment and the lack of appreciation of the importance of the extractive industries for economic development. The challenge for sustainability is to find a balance between securing minerals supply, protecting the environment and achieving social progress. 相似文献
Training and continuous education is today for the management of a mineral producing operation more important than ever before. The focus of education today in the field of mineral producing industry has not only to be dedicated versus the needs of the industry but also versus the importance of the ever increasing need of societal acceptance of industrial operations. Therefore it is expected that graduates from mining schools not only have a good knowledge of technical and economical subjects but also a good background for the realisation of environmental and safety targets for the people at work and in the neighbourhood of an operation. A strong request to the education and training at university level is therefore not only to deliver a broad knowledge but also the formation of a basis which allows to obtain authority for functions as “safety expert”, “Mine rescuer”, “waste disposal expert” and others. In the text the contents of the BSc study program “Natural resources” are reviewed and the training and education for a “Natural Resources Manager” together with the required continuous education is discussed. 相似文献