In this paper a new protocol using fuzzy logic control has been proposed. The protocol is based on Stable Election Protocol (SEP). Fuzzy logic control based on three variables, distance of nodes form base station, density of nodes and the battery level of nodes along with the traditional threshold values used in SEP are used to enhance the process of cluster head election in the existing SEP protocol and improve the lifetime and throughput of the Wireless Sensor Network. The result of the simulation which has been done in MATLAB simulator indicates that Stable Election Protocol based on fuzzy logic is more energy efficient and improves the lifetime and throughput of the network by 73.2 and 68.54 % respectively comparing with the existing SEP protocol. 相似文献
The metal‐free reaction of terminal arylacetylenes with α,α‐dichloroaldimines in 1,1,1,3,3,3‐hexafluoro‐2‐propanol as the sole solvent results in the rapid and selective formation of γ,γ‐dichloro‐β‐amino ketones. In this solvent the expected dichlorinated propargylamines and/or allylic amines are not formed. The dichloromethylene moiety of the aldimine acts as an activating group and is essential to accomplish this transformation. Electron‐rich acetylenes lead to the best results and work well with all imines (with or without α′‐H at the nitrogen substituent), while electron‐deficient acetylenes only reacted with N‐tert‐butylaldimines (no α′‐H). The mechanistic pathway showed 1,1,1,3,3,3‐hexafluoro‐2‐propanol to protonate the aldimine, which in the rate‐determining step will react with the arylacetylene to form a resonance‐stabilized allene cation, which is trapped by a HFIP molecule giving rise to an enol ether, which promptly hydrolyzes to furnish exclusively the β‐amino ketones. Using DFT techniques we found that the first C C bond forming step is the rate‐determining step and is associated with a barrier of about 21 kcal mol−1.
The present article introduced a novel idea for information hiding namely steganography. We have used new notions for the construction of the nonlinear component for block cipher based on inverse LA-semigroups. This nonlinear component fundamentally provides confidentiality in the proposed steganographic algorithm. The construction of the algorithm is fundamentally twofold. Firstly, we have constructed a novel scheme to design confusion component namely substitution box (S-box). Secondly, we have utilized the anticipated nonlinear component in digital steganography. The suggested algorithm is tested for different standard digital images. The authentication of the proposed algorithm is confirmed through statistical analysis.
In this paper new algorithms for the rapid, efficient and accurate evaluation of the standard normal integral and its tail are developed. It is shown how the accuracy of the computation can easily be improved so as to achieve machine accuracy for the particular computer being used. 相似文献
Electromagnetic wideband absorption is still perceived as a critical and formidable challenge to address with an unambiguous photonic absorber. Subwavelength metamaterial (MM) unit cells with unique and controlled features have recently gained considerable interest. However, meta-atoms, generated using a quantum-inspired pattern distribution, are underwhelming in existing literature to design photonic absorbers and their potential application to manufacture solar sails is still quite uncommon. In this article, to create a flexible, polarization-insensitive, ultrathin, and broadband MM absorber, quantum interference pattern-inspired design is utilized. Herein, a novel approach to fabricating solar sails for the space exploration incorporates the proposed broadband photonic absorber rather than conventional reflectors. The quantum-inspired meta-absorber (QIMA) exhibits an absorption of over 91% for the visible domain, i.e., 380–800 nm under a conventional plane-polarized source. It is shown in the study that broadband absorbers are almost equivalent to excellent reflectors to design the solar sails in terms of the time-averaged force calculated by utilizing the Maxwell stress tensor method. Thus, the QIMA has the potential to be a viable alternative to reflectors in the design of futuristic solar sails for space exploration. The interference theory model is also utilized to assure the dependability of calculated data, and additionally, the standard AM1.5 solar spectrum is utilized to demonstrate the QIMA's solar-harvesting potentiality. 相似文献
The use of proteinaceous material is desired as it forms a protective gelation around the active core, making it safe through temperature, pH, and O2 in the stomach and intestinal environment. During the boom of functional food utilization in this era of advancement in drug delivery systems, there is a dire need to find more protein sources that could be explored for the potential of being used as encapsulation materials, especially vegetable proteins. This review covers certain examples which need to be explored to form an encapsulation coating material, including soybeans (conglycinin and glycinin), peas (vicilin and convicilin), sunflower (helianthins and albumins), legumes (glutenins and albumins), and proteins from oats, rice, and wheat. This review covers recent interventions exploring the mentioned vegetable protein encapsulation and imminent projections in the shifting paradigm from conventional process to environmentally friendly green process technologies and the sensitivity of methods used for encapsulation. Vegetable proteins are easily biodegradable and so are the procedures of spray drying and coacervation, which have been discussed to prepare the desired encapsulated functional food. Coacervation processes are yet more promising in the case of particle size formation ranging from nano to several hundred microns. The present review emphasizes the significance of using vegetable proteins as capsule material, as well as the specificity of encapsulation methods in relation to vegetable protein sensitivity and the purpose of encapsulation accompanying recent interventions. 相似文献