首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   14篇
电工技术   1篇
综合类   1篇
化学工业   37篇
金属工艺   2篇
建筑科学   5篇
能源动力   15篇
轻工业   20篇
水利工程   1篇
无线电   10篇
一般工业技术   10篇
冶金工业   3篇
自动化技术   71篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   12篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   14篇
  2012年   15篇
  2011年   13篇
  2010年   11篇
  2009年   18篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
2.
3.
Enterprises increasingly recognize the compelling economic and operational benefits from virtualizing and pooling IT resources in the cloud. Nevertheless, the significant and valuable transformation of organizations that adopt cloud computing is accompanied by a number of security threats that should be considered. In this paper, we outline significant security challenges presented when migrating to a cloud environment and propose PaaSword – a novel holistic framework that aspires to alleviate these challenges. Specifically, the proposed framework involves a context-aware security model, the necessary policies enforcement mechanism along with a physical distribution, encryption and query middleware.  相似文献   
4.
The proposed survey discusses the topic of community detection in the context of Social Media. Community detection constitutes a significant tool for the analysis of complex networks by enabling the study of mesoscopic structures that are often associated with organizational and functional characteristics of the underlying networks. Community detection has proven to be valuable in a series of domains, e.g. biology, social sciences, bibliometrics. However, despite the unprecedented scale, complexity and the dynamic nature of the networks derived from Social Media data, there has only been limited discussion of community detection in this context. More specifically, there is hardly any discussion on the performance characteristics of community detection methods as well as the exploitation of their results in the context of real-world web mining and information retrieval scenarios. To this end, this survey first frames the concept of community and the problem of community detection in the context of Social Media, and provides a compact classification of existing algorithms based on their methodological principles. The survey places special emphasis on the performance of existing methods in terms of computational complexity and memory requirements. It presents both a theoretical and an experimental comparative discussion of several popular methods. In addition, it discusses the possibility for incremental application of the methods and proposes five strategies for scaling community detection to real-world networks of huge scales. Finally, the survey deals with the interpretation and exploitation of community detection results in the context of intelligent web applications and services.  相似文献   
5.
Experiments have consistently revealed the pivotal role of the endothelial glycocalyx layer in vasoregulation and the layer’s contribution to mechanotransduction pathways. However, the exact mechanism by which the glycocalyx mediates fluid shear stress remains elusive. This study employs atomic-scale molecular simulations with the aim of investigating the conformational and orientation properties of highly flexible oligosaccharide components of the glycocalyx and their suitability as transduction molecules under hydrodynamic loading. Fluid flow was shown to have nearly no effect on the conformation populations explored by the oligosaccharide, in comparison with static (diffusion) conditions. However, the glycan exhibited a significant orientation change, when compared to simple diffusion, aligning itself with the flow direction. It is the tethered end of the glycan, an asparagine amino acid, which experienced conformational changes as a result of this flow-induced bias. Our results suggest that shear flow through the layer can have an impact on the conformational properties of saccharide-decorated transmembrane proteins, thus acting as a mechanosensor.  相似文献   
6.
This paper examines the inherent difficulties in observing 3D rigid motion from image sequences. It does so without considering a particular estimator. Instead, it presents a statistical analysis of all the possible computational models which can be used for estimating 3D motion from an image sequence. These computational models are classified according to the mathematical constraints that they employ and the characteristics of the imaging sensor (restricted field of view and full field of view). Regarding the mathematical constraints, there exist two principles relating a sequence of images taken by a moving camera. One is the epipolar constraint, applied to motion fields, and the other the positive depth constraint, applied to normal flow fields. 3D motion estimation amounts to optimizing these constraints over the image. A statistical modeling of these constraints leads to functions which are studied with regard to their topographic structure, specifically as regards the errors in the 3D motion parameters at the places representing the minima of the functions. For conventional video cameras possessing a restricted field of view, the analysis shows that for algorithms in both classes which estimate all motion parameters simultaneously, the obtained solution has an error such that the projections of the translational and rotational errors on the image plane are perpendicular to each other. Furthermore, the estimated projection of the translation on the image lies on a line through the origin and the projection of the real translation. The situation is different for a camera with a full (360 degree) field of view (achieved by a panoramic sensor or by a system of conventional cameras). In this case, at the locations of the minima of the above two functions, either the translational or the rotational error becomes zero, while in the case of a restricted field of view both errors are non-zero. Although some ambiguities still remain in the full field of view case, the implication is that visual navigation tasks, such as visual servoing, involving 3D motion estimation are easier to solve by employing panoramic vision. Also, the analysis makes it possible to compare properties of algorithms that first estimate the translation and on the basis of the translational result estimate the rotation, algorithms that do the opposite, and algorithms that estimate all motion parameters simultaneously, thus providing a sound framework for the observability of 3D motion. Finally, the introduced framework points to new avenues for studying the stability of image-based servoing schemes.  相似文献   
7.
The classic approach to structure from motion entails a clear separation between motion estimation and structure estimation and between two-dimensional (2D) and three-dimensional (3D) information. For the recovery of the rigid transformation between different views only 2D image measurements are used. To have available enough information, most existing techniques are based on the intermediate computation of optical flow which, however, poses a problem at the locations of depth discontinuities. If we knew where depth discontinuities were, we could (using a multitude of approaches based on smoothness constraints) accurately estimate flow values for image patches corresponding to smooth scene patches; but to know the discontinuities requires solving the structure from motion problem first. This paper introduces a novel approach to structure from motion which addresses the processes of smoothing, 3D motion and structure estimation in a synergistic manner. It provides an algorithm for estimating the transformation between two views obtained by either a calibrated or uncalibrated camera. The results of the estimation are then utilized to perform a reconstruction of the scene from a short sequence of images.The technique is based on constraints on image derivatives which involve the 3D motion and shape of the scene, leading to a geometric and statistical estimation problem. The interaction between 3D motion and shape allows us to estimate the 3D motion while at the same time segmenting the scene. If we use a wrong 3D motion estimate to compute depth, we obtain a distorted version of the depth function. The distortion, however, is such that the worse the motion estimate, the more likely we are to obtain depth estimates that vary locally more than the correct ones. Since local variability of depth is due either to the existence of a discontinuity or to a wrong 3D motion estimate, being able to differentiate between these two cases provides the correct motion, which yields the least varying estimated depth as well as the image locations of scene discontinuities. We analyze the new constraints, show their relationship to the minimization of the epipolar constraint, and present experimental results using real image sequences that indicate the robustness of the method.  相似文献   
8.
If 3D rigid motion can be correctly estimated from image sequences, the structure of the scene can be correctly derived using the equations for image formation. However, an error in the estimation of 3D motion will result in the computation of a distorted version of the scene structure. Of computational interest are these regions in space where the distortions are such that the depths become negative, because in order for the scene to be visible it has to lie in front of the image, and thus the corresponding depth estimates have to be positive. The stability analysis for the structure from motion problem presented in this paper investigates the optimal relationship between the errors in the estimated translational and rotational parameters of a rigid motion that results in the estimation of a minimum number of negative depth values. The input used is the value of the flow along some direction, which is more general than optic flow or correspondence. For a planar retina it is shown that the optimal configuration is achieved when the projections of the translational and rotational errors on the image plane are perpendicular. Furthermore, the projection of the actual and the estimated translation lie on a line through the center. For a spherical retina, given a rotational error, the optimal translation is the correct one; given a translational error, the optimal rotational negative deptherror depends both in direction and value on the actual and estimated translation as well as the scene in view. The proofs, besides illuminating the confounding of translation and rotation in structure from motion, have an important application to ecological optics. The same analysis provides a computational explanation of why it is easier to estimate self-motion in the case of a spherical retina and why shape can be estimated easily in the case of a planar retina, thus suggesting that nature's design of compound eyes (or panoramic vision) for flying systems and camera-type eyes for primates (and other systems that perform manipulation) is optimal.  相似文献   
9.
This paper addresses the model reduction problem for a class of stiff chemical Langevin equations that arise as models of biomolecular networks with fast and slow reactions and can be described as continuous Markov processes. Initially, a coordinate transformation is sought that allows the decoupling of fast and slow variables in the model equations. Necessary and sufficient conditions are derived for such a linear transformation to exist, along with an explicit change of variables which achieves the desired decoupling. For the systems for which this step is applicable, the method of adiabatic elimination is applied to determine a representation of the slow dynamics. Theoretical concepts and results are illustrated with simple examples.  相似文献   
10.
One of the major challenges that mobile operators (MOs) are faced with nowadays is the transition to 4th Generation (4G) mobile communication technologies. The main reason for this lies on the reluctance of MOs to invest in a new technology without being sure about its success. The current paper investigates the decision-making procedures of a MO that wishes to migrate from its current technology type to 4G. Traditionally, the decision of deploying a new technology has been based on the analysis of similar implementations in other countries. However, such approaches can be inefficient and time consuming, as there are discrepancies concerning the technological progress among different countries. To this end, the authors employ evolutionary game theory to model the interactions of the MO’s decisions and the subscribers’ needs, and propose a practical and efficient qualitative model that identifies the circumstances under which the transition towards 4G networking can be facilitated. Specifically, the mathematical foundation of the decision making process is provided and the key role of the charging price and the quality of experience by the subscribers for using 4G connectivity is proven. With the process of 4G deployment still ongoing, this paper aims to present an analysis that can be used supplementary to the decision process of a MO that aims to evolve his network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号