Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach.For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation.The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands. 相似文献
A pilot-scale test was conducted with a two-phase anaerobic digestion (TPAD) system and a subsequential membrane bioreactor (MBR) treating chemical synthesis-based pharmaceutical wastewater. The TPAD system comprised a continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket-anaerobic filter (UASBAF), working as the acidogenic and methanogenic phases, respectively. The wastewater was high in COD, varying daily between 5789 and 58,792 mg L(-1), with a wide range of pH from 4.3 to 7.2. The wastewater was pumped at a fixed flow rate of 1m(3)h(-1) through the CSTR, the UASBAF and the MBR in series, resulting in respective HRTs of 12, 55 and 5h. Almost all the COD was removed by the TPAD-MBR system, leaving a COD of around 40 mg L(-1) in the MBR effluent. The pH of the MBR effluent was found in a narrow range of 6.8-7.6, indicating that the MBR effluent can be directly discharged into natural waters. A model, built on the back propagation neural network (BPNN) theory and linear regression techniques, was developed for the simulation of TPAD-MBR system performance in the biodegradation of chemical synthesis-based pharmaceutical wastewater. The model well fitted the laboratory data, and was able to simulate the removal of COD. 相似文献
A new visible light‐initiated 1,5‐hydride radical shift strategy has been developed to enable the one‐step functionalization of both a C(sp3) Br bond and a C(sp3) H bond adjacent to the same carbon atom. This visible light photoredox catalysis offers a mild and straightforward access to diverse five‐membered carbocyclic ring‐fused polycyclic hydrocarbons with high turnover numbers (TONs; up to 4.93×103) and broad substrate scope.