排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
提出一种彩色图像自适应增强方法:将图像从RGB色彩空间转化到HSV色彩空间并保持H分量不变,对亮度分量V通过自适应特性二维经验模式分解(ABEMD)估算其照度分量,再根据中心/环绕Retinex算法计算出反射分量,对照度和反射分量分别应用Gamma校正和Weber定律,并进行加权运算,基于全局特性自适应地调整S分量,并将图像从HSV色彩空间转化回RGB色彩空间。最后利用主观和客观的方法对实验结果进行了评价,实验表明了该算法在均值、方差、信息熵和清晰度方面均优于MSR算法和Meylan的算法。 相似文献
2.
3.
针对现有去雾后图像质量评价算法少、针对性弱和有效性差等问题, 本文提出一种基于分类学习的去雾后图像质量评价算法.该算法通过分析去雾后图像本身所蕴含的质量特征, 提取出基于图像增强、图像复原、统计先验以及人类视觉系统 (Human visual system, HVS) 的度量指标; 并在本文数据库基础上, 利用支持向量机 (Support vector machine, SVM) 将质量评价问题转换为分类问题.实验结果表明, 该算法与已有评价方法相比, 在获得高效分类评价结果的同时, 具有较好的实用性和主观一致性. 相似文献
4.
5.
6.
7.
为寻找更具鲁棒性和计算简便的特征描述子,提出了一种基于SIFT和MSE的局部聚集特征描述算法.分析说明了该方法在继承SIFT算法良好性质的基础上,通过对多尺度下信息熵的估计,能够快速准确找出图像局部结构特征并利用改进的非线性降维方法对特征描述子进行特征重划.实验结果表明,在图像尺度缩放、旋转、模糊、亮度变化等多种变换条件下,该描述子不仅能够取得更多的特征效果,并且计算速度较原算法大幅提升.该算法适用于实时性要求较高,存在旋转、尺度缩放、亮度差异等变换下的结构图像寻找描述子. 相似文献
8.
9.
10.
1