排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
本文针对图像传感器在空间辐射环境中电学性能退化问题,采用蒙特卡罗方法基于互补金属氧化物半导体(CMOS)APS器件建立几何模型,开展不同能量质子与靶原子的相互作用过程研究。通过研究不同能量质子辐照下初级碰撞原子的能谱分布及平均位移损伤能量沉积随质子能量的变化,讨论不同能量质子及空间站轨道质子能谱下在CMOS APS器件中位移损伤的差异。计算结果表明:随着入射质子能量的增大,辐照产生的初级碰撞原子的最大能量及核反应产生的初级碰撞原子(PKA)对位移损伤能量沉积的贡献逐步增加;对于大于1 MeV的质子辐照,CMOS APS器件中位移损伤研究可忽略氧化层的影响;不同能量的质子和CREME96程序中空间站轨道质子能谱下器件中位移损伤能量沉积分布结果显示,35 MeV质子与该空间站轨道质子能谱在器件敏感区中产生的总位移损伤能量沉积相近。该工作对模拟空间站轨道质子辐照下电子器件暗电流增长研究中辐照实验的能量选择,提供了参考依据。 相似文献
2.
磷化铟(InP)作为重要的第二代半导体材料,禁带宽度大,电子漂移速度快,抗辐照性能比Si,GaAs好,可作为制备空间飞行器上电学器件的备选材料。随着半导体器件的尺寸纳米化,空间环境中低能质子辐照元件所导致的位移损伤成为影响元件电学性能的主要因素之一。本文使用Geant4模拟得到低能质子入射InP产生的初级撞出原子(PKA)种类及占比和不同能量质子的非电离能量损失(NIEL)的深度分布。结果表明:质子俘获和核反应的概率随质子能量的增加而增加,进而使弹性碰撞产生的反冲原子In,P的占比减少,其他反冲原子占比增加;NIEL峰值随质子能量的增加而降低,且NIEL峰有向前移动的趋势,即随着质子能量增加,位移损伤严重区域逐渐由材料末端移至材料表面。 相似文献
1