排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
对于平衡数据集支持向量机(support vector machine,SVM)通常具有很好的分类性能和泛化能力,然而对于不平衡数据集,SVM只能得到次优结果,针对该问题提出了一种基于SVM的AS-Ada Boost SVM分类算法.首先,通过使用ADASYN采样,提高少类样本在边界区域的密度;然后,使用基于径向基核支持向量机(radial basis function kernel mapping support vector machine,RBFSVM)模型弱分类器的Ada Boost SVM算法训练得到决策分类器.通过将该算法在各种不平衡数据集上的测试结果与单纯运用ADASYN技术、Ada Boost SVM、SMOTEBoost等其他分类器进行比较,验证了该算法的有效性和鲁棒性. 相似文献
2.
提出一种快速的反向k近邻查找算法,该方法利用现代计算机具有外存便宜、运行速度快的特点,预先计算数据之间的距离,并组织为数据索引块存储于外存,由计算机在空闲时自动进行维护.在进行反向最近邻查询时,只需读入相应的索引块,就可进行直接查询,其时间复杂度为O(N),而且不受k的影响.为减少索引块的读取时间,提出一种改进方法来有效地压缩索引块,仅用必要的二进制位来存储对象之间的距离,并将冗余减少到最低水平,提高了算法的效率.最后通过实验分析评估算法的有效性和效率. 相似文献
3.
改进的随机森林及其在遥感图像中的应用 总被引:1,自引:0,他引:1
对于遥感图像训练样本获取难的问题,引入适用于小样本分类的随机森林算法。为了随机森林能在小样本情况下有更优的分类效果和更高的稳定性,在决策树基础上提出了一种更加随机的特征组合的方法,降低了决策树之间的相关性,从而降低了森林的泛化误差;引入人工免疫算法来对改进后的随机森林进行压缩优化,很好地权衡了森林规模和分类稳定性、精度的矛盾。通过UCI数据集的实验表明,改进的随机森林的有效性及其优化的模型的可行性,优化后森林的规模降低了,且有更高的分类精度。在遥感图像上与传统的方法进行了对比。 相似文献
4.
基于GML的WebGIS地理信息建模 总被引:6,自引:0,他引:6
文章分析了目前的地理信息系统的建模方法及其存在的问题,结合XML/GML技术,研究基于GML的地理信息的建模方法与实现技术。并以旅游地理信息系统为开发实例,给出了基于GML的泉州市旅游地理信息的建模方案和具体实现方法。 相似文献
5.
基于卷积神经网络提取抽象特征缺乏时空信息的问题,结合时空上下文模型作为卷积神经网络的各阶滤波器,提出一种在线卷积神经网络的视觉跟踪算法.首先对初始目标进行归一化处理并提取目标置信图,跟踪过程中结合时空信息更新得到时空上下文模型,第1层使用更新后的模型对输入进行卷积,并对卷积结果进行滑动窗口取片,第2层再使用时空模型分别对取片结果进行卷积,提取目标简单抽象特征,然后叠加简单层的卷积结果得到目标的深层次表达,最后结合粒子滤波跟踪框架实现目标跟踪.实验表明:结合时空上下文模型的在线卷积网络结构提取的深度抽象特征,保留相关时空信息,提高复杂背景下的跟踪效率. 相似文献
6.
为解决多目标打斗、抢劫等异常行为检测精度不高的问题,提出一种联合加权重构轨迹与直方图熵的异常行为检测算法。首先,采用背景相减法结合宽高比提取行人目标;然后将卡尔曼滤波器及HOG特征融入时空上下文算法中,实现短时间内被完全遮挡行人的鲁棒跟踪;最后对跟踪轨迹进行训练,构造正常行为字典并稀疏重构待检测轨迹,通过联合加权最小重构残差和直方图熵,实现对异常行为的有效检测。通过对比实验,表明该算法对于打斗和抢劫等异常行为具有较好的检测效果,在静态背景且无遮挡的情况下,检测率可达92%以上。 相似文献
7.
分析了目前WebGIS的实现技术,以及WebGIS中广泛使用的HTML的局限性,探讨XML技术及其在WebGIS中的应用,把XML应用于WebGIS中,研究基于XML的WebGIS的计算模型和实现方法。 相似文献
8.
9.
为了提高人工免疫网络的数据处理能力,在aiNet的基础上提出一种动态自适应免疫网络算法。首先调用模糊C均值对(部分)初始数据进行聚类,从聚类结果的各类数据中分别选取若干个数据作为免疫网络初始抗体集合,以获取待分类数据的初始分布信息,避免因随机获取初始抗体集合而存在的盲目性;引入基于小生境的评价函数,以有效衡量抗体与抗原之间的亲和度,避免进化过程中的近亲繁殖;在网络进化过程中,对克隆抗体的选取及网络抑制的阈值进行了动态控制,使其随网络的进化而动态改变,从而提高系统的动态自适应性。通过实验测试对比分析了算法的分类精度和网络收敛速度,结果表明,该算法对数据分类具有较高的准确性,同时大大提高了网络的收敛速度。 相似文献
10.
针对深度学习跟踪算法训练样本缺少、训练费时、算法复杂度高等问题,引入高斯核函数进行加速,提出一种无需训练的简化卷积神经网络跟踪算法。首先,对初始帧目标进行归一化处理并聚类提取一系列初始滤波器组,跟踪过程中结合目标背景信息与前景候选目标进行卷积;然后,提取目标简单抽象特征;最后,将简单层的卷积结果进行叠加得到目标的深层次特征表达。通过高斯核函数加速来提高算法中全部卷积运算的速度,利用目标的局部结构特征信息,对网络各阶段滤波器进行更新,结合粒子滤波跟踪框架实现跟踪。在CVPR2013跟踪数据集上的实验表明,本文方法脱离了繁琐深度学习运行环境,能克服低分辨率下目标局部遮挡与形变等问题,提高复杂背景下的跟踪效率。 相似文献