Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand. 相似文献
Aluminum‐gallium‐nitride alloys (AlxGa1–xN, 0 ≤ x ≤ 1) can emit light covering the ultraviolet spectrum from 210 to 360 nm. However, these emitters have not fulfilled their full promise to replace the toxic and fragile mercury UV lamps due to their low efficiencies. This study demonstrates a promising approach to enhancing the luminescence efficiency of AlGaN multiple quantum wells (MQWs) via the introduction of a lateral‐polarity structure (LPS) comprising both III and N‐polar domains. The enhanced luminescence in LPS is attributed to the surface roughening, and compositional inhomogeneities in the N‐polar domain. The space‐resolved internal quantum efficiency (IQE) mapping shows a higher relative IQE in N‐polar domains and near inversion domain boundaries, providing strong evidence of enhanced radiative recombination efficiency in the LPS. These experimental observations are in good agreement with the theoretical calculations, where both lateral and vertical band diagrams are investigated. This work suggests that the introduction of the LPS in AlGaN‐based MQWs can provide unprecedented tunability in achieving higher luminescence performance in the development of solid state light sources. 相似文献
SDN enables a new networking paradigm probable to improve system efficiency where complex networks are easily managed and controlled. SDN allows network virtualization and advance programmability for customizing the behaviour of networking devices with user defined features even at run time. SDN separates network control and data planes. Intelligently controlled network management and operation, such that routing is eliminated from forwarding elements (switches) while shifting the routing logic in a centralized module named SDN Controller. Mininet is Linux based network emulator which is cost effective for implementing SDN having in built support of OpenFlow switches. This paper presents practical implementation of Mininet with ns-3 using Wi-Fi. Previous results reported in literature were limited upto 512 nodes in Mininet. Tests are conducted in Mininet by varying number of nodes in two distinct scenarios based on scalability and resource capabilities of the host system. We presented a low cost and reliable method allowing scalability with authenticity of results in real time environment. Simulation results show a marked improvement in time required for creating a topology designed for 3 nodes with powerful resources i.e. only 0.077 sec and 4.512 sec with limited resources, however with 2047 nodes required time is 1623.547 sec for powerful resources and 4615.115 sec with less capable resources respectively.
Orthogonal frequency division multiplexing (OFDM) radar signals have been introduced for high range resolution radars. These signals have prominent properties such as favorable ambiguity function, high bandwidth efficiency, and possibility of use in dual mode radar/communication systems. But the large amplitude fluctuations of the OFDM signal make it susceptible to system nonlinearities. To alleviate this problem, constant envelope OFDM (CE-OFDM) signal has been introduced which combines orthogonal frequency division multiplexing and phase modulation or frequency modulation. Although several works have been reported on OFDM radar signal design, there is no a systematic approach for designing CE-OFDM signals for radar applications. In this paper we will focus on CE-OFDM signal design for radar applications. Two different methods for designing a CE-OFDM signal with favorable ambiguity functions are introduced. The first one is based on modulating a complementary set of sequences on different sub-carriers while the second is based on using a proper single carrier coded signal and then extracting its most similar multicarrier OFDM or CE-OFDM coded signal. 相似文献
In this article, novel approaches to perform efficient motion estimation specific to surveillance video compression are proposed. These includes (i) selective (ii) tracker-based and (iii) multi-frame-based motion estimation. In selective approach, motion vector search is performed for only those frames that contain some motion activity. In another approach, contrary to performing motion estimation on the encoder side, motion vectors are calculated using information of a surveillance video tracker. This approach is quicker but for some scenarios it degrades the visual perception of the video compared with selective approach. In an effort to speed up multi-frame motion estimation, we propose a fast multiple reference frames-based motion estimation technique for surveillance videos. Experimental evaluation shows that significant reduction in computational complexity can be achieved by applying the proposed strategies. 相似文献
Mobile ad hoc networks (MANETs) are becoming an emerging technology that offer several advantages to users in terms of cost and ease of use. A MANET is a collection of mobile nodes connected by wireless links that form a temporary network topology that operates without a base station and centralized administration. Routing is a method through which information is forwarded from a transmitter to a specific recipient. Routing is a strategy that guarantees, at any time, the connection between any two nodes in a network. In this work, we propose a novel routing protocol inspired by the cuckoo search method. Our routing protocol is implemented using Network simulator 2. We chose Random WayPoint model as our mobility model. To validate our work, we opted for the comparison with the routing protocol ad hoc on-demand distance vector, destination sequence distance vector and the bio-inspired routing protocol AntHocNet in terms of the quality of service parameters: packet delivery ratio and end-to-end delay (E2ED). 相似文献
In the present study a new design of the equal channel angular pressing die and punch is introduced. The new design eliminates the deflection of the punch and at the same time lowers the frictional forces by reducing the contact area. In order to show the capability of the new design, the Al-7075 alloy samples were processed in two equal channel angular pressing dies. The measured data for the novel and conventional equal channel angular pressing processes were compared. The microstructure of the processed samples was examined with scanning electron microscopy and transmission electron microscopy. The results of the experimental study revealed that the novel die can fully eliminate the risk of the punch deflection and simultaneously reduce the maximum required pressing force by about 3.1 % to 9.8 % for 16 % to 40 % reduction in frictional contact surfaces. The analysis of experimental results showed that there is non-linear relation between the frictional contact area and the pressing load. In addition, it is shown that despites high contact pressures and high temperatures the use of graphite as a lubricant between sliding surfaces can considerably reduce the pressing load. 相似文献
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target. 相似文献