首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   8篇
  国内免费   3篇
电工技术   5篇
化学工业   59篇
机械仪表   1篇
建筑科学   6篇
能源动力   6篇
轻工业   11篇
水利工程   26篇
石油天然气   2篇
无线电   32篇
一般工业技术   36篇
冶金工业   38篇
自动化技术   79篇
  2023年   2篇
  2022年   7篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2014年   7篇
  2013年   14篇
  2012年   9篇
  2011年   11篇
  2010年   6篇
  2009年   18篇
  2008年   15篇
  2007年   13篇
  2006年   9篇
  2005年   13篇
  2004年   8篇
  2003年   9篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1999年   5篇
  1998年   8篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1989年   4篇
  1988年   2篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有301条查询结果,搜索用时 0 毫秒
1.
Fractionation of partly hydrolysed polyvinyl acetate (PVA) was performed by warming of its aqueous solutions. The following properties of the obtained fractions were determined: viscosity, molecular weight and molecular weight distribution, surface tension, and absorbance in the IR range. The blockiness of the polymer molecules, characterized by their behaviour towards iodine-containing systems such as I2,-H3BO3 and I2,-KI, was estimated. Fractionation of the aqueous solutions of PVA by warming is based mainly on the different internal molecular structure of the separated products, i.e. on the length of the vinyl acetate blocks in the PVA molecules and, to a lesser extent, on the degree of hydrolysis and the degree of polymerization. The more blocklike are the PVA molecules, the less compatible are the polymers in the PVA-hydroxypropyl methylcellulose (HPMC)-water system. At phase separation in this sytem the PVA molecules which are not compatible with HPMC are, in the first place, those of the highest blockiness.  相似文献   
2.
3.
Derandomized graph products   总被引:1,自引:0,他引:1  
Berman and Schnitger gave a randomized reduction from approximating MAX-SNP problems within constant factors arbitrarily close to 1 to approximating clique within a factor ofn (for some ). This reduction was further studied by Blum, who gave it the namerandomized graph products. We show that this reduction can be made deterministic (derandomized), using random walks on expander graphs. The main technical contribution of this paper is in proving a lower bound for the probability that all steps of a random walk stay within a specified set of vertices of a graph. (Previous work was mainly concerned with upper bounds for this probability.) This lower bound extends also to the case where different sets of vertices are specified for different time steps of the walk.  相似文献   
4.
The Meteor metric for automatic evaluation of machine translation   总被引:1,自引:1,他引:0  
The Meteor Automatic Metric for Machine Translation evaluation, originally developed and released in 2004, was designed with the explicit goal of producing sentence-level scores which correlate well with human judgments of translation quality. Several key design decisions were incorporated into Meteor in support of this goal. In contrast with IBM’s Bleu, which uses only precision-based features, Meteor uses and emphasizes recall in addition to precision, a property that has been confirmed by several metrics as being critical for high correlation with human judgments. Meteor also addresses the problem of reference translation variability by utilizing flexible word matching, allowing for morphological variants and synonyms to be taken into account as legitimate correspondences. Furthermore, the feature ingredients within Meteor are parameterized, allowing for the tuning of the metric’s free parameters in search of values that result in optimal correlation with human judgments. Optimal parameters can be separately tuned for different types of human judgments and for different languages. We discuss the initial design of the Meteor metric, subsequent improvements, and performance in several independent evaluations in recent years.  相似文献   
5.
Luke  Oren  Alon 《Journal of Web Semantics》2004,2(2):153-183
This paper investigates how the vision of the Semantic Web can be carried over to the realm of email. We introduce a general notion of semantic email, in which an email message consists of a structured query or update coupled with corresponding explanatory text. Semantic email opens the door to a wide range of automated, email-mediated applications with formally guaranteed properties. In particular, this paper introduces a broad class of semantic email processes. For example, consider the process of sending an email to a program committee, asking who will attend the PC dinner, automatically collecting the responses, and tallying them up. We define both logical and decision-theoretic models where an email process is modeled as a set of updates to a data set on which we specify goals via certain constraints or utilities. We then describe a set of inference problems that arise while trying to satisfy these goals and analyze their computational tractability. In particular, we show that for the logical model it is possible to automatically infer which email responses are acceptable w.r.t. a set of constraints in polynomial time, and for the decision-theoretic model it is possible to compute the optimal message-handling policy in polynomial time. In addition, we show how to automatically generate explanations for a process's actions, and identify cases where such explanations can be generated in polynomial time. Finally, we discuss our publicly available implementation of semantic email and outline research challenges in this realm.1  相似文献   
6.
A Secure Function Evaluation (SFE) of a two-variable function f(·,·) is a protocol that allows two parties with inputs x and y to evaluate f(x,y) in a manner where neither party learns "more than is necessary". A rich body of work deals with the study of completeness for secure two-party computation. A function f is complete for SFE if a protocol for securely evaluating f allows the secure evaluation of all (efficiently computable) functions. The questions investigated are which functions are complete for SFE, which functions have SFE protocols unconditionally and whether there are functions that are neither complete nor have efficient SFE protocols. The previous study of these questions was mainly conducted from an information theoretic point of view and provided strong answers in the form of combinatorial properties. However, we show that there are major differences between the information theoretic and computational settings. In particular, we show functions that are considered as having SFE unconditionally by the combinatorial criteria but are actually complete in the computational setting. We initiate the fully computational study of these fundamental questions. Somewhat surprisingly, we manage to provide an almost full characterization of the complete functions in this model as well. More precisely, we present a computational criterion (called computational row non-transitivity) for a function f to be complete for the asymmetric case. Furthermore, we show a matching criterion called computational row transitivity for f to have a simple SFE (based on no additional assumptions). This criterion is close to the negation of the computational row non-transitivity and thus we essentially characterize all "nice" functions as either complete or having SFE unconditionally.  相似文献   
7.
The implementation of a 2-core, multi-threaded itanium family processor   总被引:1,自引:0,他引:1  
The design of the high end server processor code named Montecito incorporated several ambitious goals requiring innovation. The most obvious being the incorporation of two legacy cores on-die and at the same time reducing power by 23%. This is an effective 325% increase in MIPS per watt which necessitated a holistic focus on power reduction and management. The next challenge in the implementation was to ensure robust and high frequency circuit operation in the 90-nm process generation which brings with it higher leakage and greater variability. Achieving this goal required new methodologies for design, a greatly improved and tunable clock system and a better understanding of our power grid behavior all of which required new circuits and capabilities. The final aspect of circuit design improvement involved the I/O design for our legacy multi-drop system bus. To properly feed the two high frequency cores with memory bandwidth we needed to ensure frequency headroom in the operation of the bus. This was achieved through several innovations in controllability and tuning of the I/O buffers which are discussed as well.  相似文献   
8.
Base station placement has significant impact on sensor network performance. Despite its significance, results on this problem remain limited, particularly theoretical results that can provide performance guarantee. This paper proposes a set of procedure to design (1− ε) approximation algorithms for base station placement problems under any desired small error bound ε > 0. It offers a general framework to transform infinite search space to a finite-element search space with performance guarantee. We apply this procedure to solve two practical problems. In the first problem where the objective is to maximize network lifetime, an approximation algorithm designed through this procedure offers 1/ε2 complexity reduction when compared to a state-of-the-art algorithm. This represents the best known result to this problem. In the second problem, we apply the design procedure to address base station placement problem when the optimization objective is to maximize network capacity. Our (1− ε) approximation algorithm is the first theoretical result on this problem. Yi Shi received his B.S. degree from University of Science and Technology of China, Hefei, China, in 1998, a M.S. degree from Institute of Software, Chinese Academy of Science, Beijing, China, in 2001, and a second M.S. degree from Virginia Tech, Blacksburg, VA, in 2003, all in computer science. He is currently working toward his Ph.D. degree in electrical and computer engineering at Virginia Tech. While in undergraduate, he was a recipient of Meritorious Award in International Mathematical Contest in Modeling and 1997 and 1998, respectively. His current research focuses on algorithms and optimizations for wireless sensor networks, wireless ad hoc networks, UWB-based networks, and SDR-based networks. His work has appeared in journals and highly selective international conferences (ACM Mobicom, ACM Mobihoc, and IEEE Infocom). Y. Thomas Hou received the B.E. degree from the City College of New York in 1991, the M.S. degree from Columbia University in 1993, and the Ph.D. degree from Polytechnic University, Brooklyn, New York, in 1998, all in Electrical Engineering. Since Fall 2002, he has been an Assistant Professor at Virginia Tech, the Bradley Department of Electrical and Computer Engineering, Blacksburg, VA. His current research interests are radio resource (spectrum) management and networking for software-defined radio wireless networks, optimization and algorithm design for wireless ad hoc and sensor networks, and video communications over dynamic ad hoc networks. From 1997 to 2002, Dr. Hou was a Researcher at Fujitsu Laboratories of America, Sunnyvale, CA, where he worked on scalable architectures, protocols, and implementations for differentiated services Internet, service overlay networking, video streaming, and network bandwidth allocation policies and distributed flow control algorithms. Prof. Hou is a recipient of an Office of Naval Research (ONR) Young Investigator Award (2003) and a National Science Foundation (NSF) CAREER Award (2004). He is a Co-Chair of Technical Program Committee of the Second International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM 2007), Orlando, FL, August 1–3, 2007. He also was the Chair of the First IEEE Workshop on Networking Technologies for Software Defined Radio Networks, September 25, 2006, Reston, VA. Prof. Hou holds two U.S. patents and has three more pending. Alon Efrat earned his Bachelor in Applied Mathematics from the Technion (Israel’s Institute of Technology) in 1991, his Master in Computer Science from the Technion in 1993, and his Ph.D in Computer Science from Tel-Aviv University in 1998. During 1998–2000 he was a Post Doctorate Research Associate at the Computer Science Department of Stanford University, and at IBM Almaden Research Center. Since 2000, he is an assistant professor at the Computer Science Department of the University of Arizona. His main research areas are Computational Geometry, and its applications to sensor networks and medical imaging.  相似文献   
9.
Repeated communication and Ramsey graphs   总被引:2,自引:0,他引:2  
We study the savings afforded by repeated use in two zero-error communication problems. We show that for some random sources, communicating one instance requires arbitrarily many bits, but communicating multiple instances requires roughly 1 bit per instance. We also exhibit sources where the number of bits required for a single instance is comparable to the source's size, but two instances require only a logarithmic number of additional bits. We relate this problem to that of communicating information over a channel. Known results imply that some channels can communicate exponentially more bits in two uses than they can in one use  相似文献   
10.
Decoupled water splitting is a promising new path for renewable hydrogen production, offering many potential advantages such as stable operation under partial-load conditions, high-pressure hydrogen production, overall system robustness, and higher safety levels. Here, the performance of electrospun core/shell nickel/nickel hydroxide anodes is demonstrated in an electrochemical-thermally activated chemical decoupled water splitting process. The high surface area of the hierarchical porous electrode structure improves the utilization efficiency, charge capacity, and current density of the redox anode while maintaining high process efficiency. The anodes reach average current densities as high as 113 mA cm−2 at a working potential of 1.48 VRHE and 64 mA cm−2 at 1.43 VRHE, with a Faradaic efficiency of nearly 100% and no H2/O2 intermixing in a membrane-free cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号