首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
化学工业   1篇
轻工业   1篇
无线电   4篇
一般工业技术   1篇
  2018年   1篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine.  相似文献   
2.
A mononuclear Co(II) derivative, (1) is afforded by employing a ‘scorpionate’ type precursor, bdtbpza [bdtbpza?=?bis(3,5-di-t-butylpyrazol-1-yl)acetate]. Single crystal X-ray structure reveals that the CoII ion exhibits an octahedral geometry possessing on a O6 coordination environment. Detailed EPR interpretation and electrocatalytic hydrogen evolution study are reported. Electrochemical and catalytic study of 1 in DMSO with the presence of acetic acid as weak proton source shows an observed rate constant of 3.7?×?103 s?1 and hydrogen evolution Faradaic efficiency of 74.7%. The catalytic process requires two-electron reduction of the catalyst and formation of a cobalt(II)-hydride species as reactive intermediate.

Graphical Abstract

  相似文献   
3.
Background: The interplay between numerous factors, including the size, shape, coating, surface charge and composition of particles is known to affect the pharmacokinetics and biodistribution of superparamagnetic iron oxides (SPIOs). This makes understanding the role of each factor independently quite challenging.

Methods: In the present study, the in vivo magnetic resonance imaging (MRI), biodistribution and hepatic clearance evaluations of two SPIOs Formulations A and B developed from ~13.5?nm hydrophobic oleic acid stabilized monodisperse magnetite nanocrystals core and lipid-based amphiphilic stabilizers were performed using a prototype benchtop MR imager (22?MHz) and pulsed nuclear magnetic resonance (NMR) system (20?MHz), respectively. Formulation A was composed of mPEG-2000-DSPE and Formulation B was composed of Phospholipon-100H, sucrose ester M-1695 and Cremophor RH-40.

Results: The in vivo MRI investigations showed that both formulations were safe and effective as potential liver MR contrast agents with sustained liver contrast for at least seven days. In addition, ex vivo relaxometric investigations revealed that the formulations predominantly distribute to the liver and spleen following I.V. injection. The hepatic clearance kinetics determined based on the relaxometric quantification method indicated that both formulations exhibited a biphasic clearance process with a slow terminal clearance half-life of 11.5 and 12.7 days, respectively, for Formulations A and B.

Conclusions: The results of this study showed the potential biomedical applications of the investigated magnetopharmaceutical formulations as MRI contrast agents.  相似文献   
4.
The pulsed laser deposition (PLD) technique is used for the direct fabrication of nanohybrid heterojunctions (NH‐HJs) solar cells exhibiting high PCE and excellent stability in air without any encapsulation and/or resorting to any surface treatment, ligand engineering and/or post‐synthesis processing. The NH‐HJs are achieved through the PLD‐based decoration of hydrothermally‐grown one‐dimensional TiO2 nanorods (TiO2‐NRs) by PbS quantum dots (PbS‐QDs). By optimizing both the amount of PbS‐QDs (via the number of laser ablation pulses) and the length of the TiO2‐NRs, it is possible to achieve optimal NH‐HJs based PV devices with high power conversion efficiency (PCE) of 4.85%. This high PCE is found to occur for an optimal length of the NRs (≈290 nm) which coincides with the average penetration depth of PbS‐QDs into the porous TiO2‐NRs matrix, leading thereby to the formation of the largest extent of NH‐HJs. Most importantly, the PCE of these novel devices is found to be fairly stable for several months under ambient air. The addition of single‐wall carbon nanotubes (SWCNTs) onto the TiO2‐NRs prior to their decoration by PbS‐QDs is shown to further enhance their PCE to a value as high as 5.3%, because of additional light absorption and improved charge collection ensured by SWCNTs.  相似文献   
5.
6.
A solution‐processed nanoarchitecture based on PbS quantum dots (QDs) and multi‐walled carbon nanotubes (MWCNTs) is synthesized by simply mixing the pre‐synthesized high‐quality PbS QDs and oleylamine (OLA) pre‐functionalized MWCNTs. Pre‐functionalization of MWCNTs with OLA is crucial for the attachment of PbS QDs and the coverage of QDs on the surface of MWCNTs can be tuned by varying the ratio of PbS QDs to MWCNTs. The apparent photoluminescence (steady‐state emission and fluorescence lifetime) “quenching” effect indicates efficient charge transfer from photo‐excited PbS QDs to MWCNTs. The as‐synthesized PbS‐QD/MWCNT nanoarchitecture is further incorporated into a hole‐conducting polymer poly(3‐hexylthiophene)‐(P3HT), forming the P3HT:PbS‐QD/MWCNT nanohybrid, in which the PbS QDs act as a light harvester for absorbing irradiation over a wide wavelength range of the solar spectrum up to near infrared (NIR, ≈1430 nm) range; whereas, the one‐dimensional MWCNTs and P3HT are used to collect and transport photoexcited electrons and holes to the cathode and anode, respectively. Even without performing the often required “ligand exchange” to remove the long‐chained OLA ligands, the built nanohybrid photovoltaic (PV) device exhibits a largely enhanced power conversion efficiency (PCE) of 3.03% as compared to 2.57% for the standard bulk hetero‐junction PV cell made with P3HT and [6,6]‐Phenyl‐C61‐Butyric Acid Methyl Ester (PCBM) mixtures. The improved performance of P3HT:PbS‐QD/MWCNT nanohybrid PV device is attributed to the significantly extended absorption up to NIR by PbS QDs as well as the effectively enhanced charge separation and transportation due to the integrated MWCNTs and P3HT. Our research results suggest that properly integrating QDs, MWCNTs, and polymers into nanohybrid structures is a promising approach for the development of highly efficient PV devices.  相似文献   
7.
The effect of germination time (48, 96 and 144 h) on malt quality of six sorghum varieties was investigated to determine the potential of grain sorghum cultivars in the local brewery industry. Six sorghum varieties (Gambella 1107, Macia, Meko, Red‐Swazi, Teshale and 76 T1#23) were evaluated in a randomized complete block design with three replications. The results showed that both germination time and variety had a significant effect (p ≤ 0.05) on sorghum malt quality. The hectolitre weight (kg hL?1 at 12.5% moisture), germination energy (%), crude protein (%) and flour starch amylose content (%) were: 75.8–82.9, 96–99, 7.0 ? 11.9 and 16.0 ? 23.0, respectively. The sorghum malt diastatic power (DP, °L), free amino nitrogen (FAN, mg L?1), hot water extract (HWE, %) and malting loss (%) were: 18.96 ? 31.39, 185.67 ? 343.29, 41.85 ? 85.08 and 8.68 ? 27.56, respectively. Malting loss, HWE and FAN increased with germination time. The DP increased as the germination duration increased from 48 to 96 h, but the difference between 96 and 144 h was not significant. Considering the excessive malting loss and marginal increase in HWE beyond 96 h, this study suggests that the optimum malting duration would be around 96 h. Among the varieties tested, Teshale and Gambella 1107 produced the better malt quality. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号