In the future fifth generation networked society, devices will suffer from the asynchronous multi-carrier effect which impacts the user’s quality of experience. This paper investigates the timing misalignment effect on interference level in the context of a cognitive radio (CR) network. Our study considers both multicarrier techniques orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC). The originality of our paper consists in proposing a simple but accurate analytical model to evaluate our system’s performance in terms of interference level, signal-to-interference-plus-noise ratio and bit error rate. Specifically, two case studies are considered, a single-user case (one primary user and one secondary user) and a multi-user case with exact theoretical expressions of interference level. We had also made a comparison between OFDM and FBMC techniques. The most striking observation to emerge from our results is that the asynchronous interference is inversely propositional to timing offset even for the multi-user case, and that differences in the normalized interference level between the single/multi-user cases is barely perceived for the FBMC technique, proving its efficiency. Our simulations’ results had further strengthened our confidence in the suggested model. It shows that FBMC is best suited for CR networks since it provides BER improvements compared to OFDM.
Network management for optical networks faces additional security challenges that arise by using transparent optical network components in communication systems. While some available management mechanisms are applicable to different types of network architectures, many of these are not adequate for all-optical networks. These have unique features and requirements in terms of security and quality of service, thus requiring a much more targeted approach in terms of network management. In this article we consider management issues with particular emphasis on complications that arise due to the unique characteristics and peculiar behaviors of transparent network components. In particular, signal quality monitoring is still a major complication in all-optical networks. Despite new methods for detection and localization of attacks having been proposed, no robust standards or techniques exist to date for guaranteeing the quality of service in these networks. Therefore, sophisticated mechanisms that assist in managing and assessing the proper function of transparent network components are highly desirable. Accordingly, we present an algorithm for multiple attack localization and identification that can participate in some tasks for fault management of all-optical networks 相似文献
In this paper, we evaluate the performance of a novel cooperative adaptive relaying scheme called ISDF (Incremental Selective Decode and Forward). We compare the energy efficiency of this underlying scheme with direct transmission (DT), Fixed and adaptive relaying schemes in Wireless Sensor Network (WSN). The system is constrained by a minimum value of Signal-to- Noise Ratio (SNR) and the end-to-end throughput. We consider a three-node cooperative system. The relay is equidistant to the source and destination, and then we study different positions of the latter. The destination receives two copies of the message: one from the source and the other from the relay. Then it combines them by using maximal ratio combining (MRC). The proposed scheme differs from other schemes by the combination of the selective decode and forward scheme with the incremental scheme which requires the presence of a feed-back from the destination. The analysis reveals that the proposed ISDF provides good energy efficiency compared to DT and other cooperative schemes. It also shows that DF cooperative scheme (decode and forward , either with feedback or no, is outperformed by AF (amplify and forward) scheme especially when the relay is placed near the destination.
Poor strength, infection, leakage, long procedure times, and inflammation limit the efficacy of common tissue sealing devices in surgeries and trauma. Light-activated sealing is attractive for tissue sealing and repair, and can be facilitated by the generation of local heat following absorption of nonionizing laser energy by chromophores. Here, the inherent ability of biomaterials is exploited to absorb nonionizing, mid-infrared (midIR) light in order to engender rapid photothermal sealing and repair of soft tissue wounds. In this approach, the biomaterial simultaneously acts as a photothermal convertor as well as a biosealant, which dispenses the need for exogeneous light-absorbing nanoparticles or dyes. Biomechanical recovery, mathematical modeling, histopathology analyses, tissue strain mapping using digital imaging correlation, and visualization of the biosealant-tissue interface using hyperspectral imaging indicate superior performance of midIR sealing in live mice compared to conventional sutures and glue. The midIR-biosealant approach demonstrates rapid sealing of soft tissues, improves cosmesis, lowers potential for scarring, obviates safety concerns because of the nonionizing light used, and allows adoption of a wide diversity of biomaterials. Taken together, the studies demonstrate a novel advance both in biomaterials for surgical sealing along with the use of nonionizing midIR light, with high potential for clinical translation. 相似文献
In mobile ad hoc networks (MANETs), node mobility management is performed by the routing protocol. It may use metrics to reflect link state/quality. But, the delay between measures of the link quality and its integration in the route computation is very detrimental to the mobility management. Consequently, routing protocols may use lossy links for a few seconds leading to a significant performance deterioration. In this paper, we propose a new routing metric technique calculation which aims at anticipating link quality. Basically, the idea is to predict metric values a few seconds in advance, in order to compensate the delay involved by the link quality measurement and their dissemination by the routing protocol. Our technique is based on measurements of signal strength and is integrated in two classical routing metrics: ETX (expected transmission count) and ETT (expected transmission time). Validations are performed through both simulations and a testbed experimentation with OLSR as routing protocol. NS-3 simulations show that our metric may lead to a perfect mobility management with a packet delivery ratio of 100%. Experiments on a testbed prove the feasibility of our approach and show that this technique reduces the packet error rate by a factor of 3 in an indoor environment compared to the classical metrics calculation. 相似文献
Wireless Personal Communications - This paper presents an analytical investigation on the effect of nonlinear high-power amplifiers on the physical layer security of multiple-input-multiple-output... 相似文献
In this paper, we will perform a comparison between two approaches of dimensional synthesis of parallel robots. The first one concerns the single-objective optimization approach; in this case, the dimensional synthesis is expressed by taking into account only one performance criterion but enables to get a final solution if it exists. The second one concerns the multi-objective optimization approach; it enables to simultaneously take into account several performance criteria. However, this approach appears to provide a set of solutions instead of a single expected final solution which should directly enable to carry out the structural synthesis. In fact, the search of a single final solution is postponed to a further step where the designers have to impose and/or restrict certain parameters. And we will establish if it is really necessary to make a multi-objective optimization approach or if a single-objective is sufficient to reach the objectives set in the specifications (user requirements). A discussion is proposed concerning the arising questions related to each approach and leading to the optimal dimensional synthesis. The PAR2 robot with two degree-of-freedom is used to exemplify the analysis and the comparison of the two approaches. The proposed comparison can be applied to any classes of parallel robots. 相似文献
Electrochemical oxidation of O-Toluidine (OT) was studied by galvanostatic electrolysis using lead dioxide (PbO2) and boron-doped diamond (BDD) as anodes. The influence of operating parameters, such as current density, initial concentration of OT and temperature was investigated. Measurements of chemical oxygen demand were used to follow the oxidation. The experimental data indicated that on PbO2 and BDD anodes, OT oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high temperature. Furthermore, BDD anodes offer significant advantages over PbO2 in terms of current efficiency and oxidation rate. 相似文献