首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
化学工业   2篇
无线电   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Novel hydroxypropylmethyl cellulose (HPMC)‐based sponges containing self‐microemulsifying curcumin (SME‐Cur) were prepared by a freeze drying method using different grades of HPMC (E5 LV, E15 LV, E50 LV, A15 LV, and A4C). The physical properties and drug release from these carriers were characterized and compared among the different formulations. The mean pore size values of the sponges from image analysis ranged from 43.36 ± 4.54 to 123.22 ± 8.19 nm. An increase in the concentration or viscosity of the HPMC, resulted in denser sponges and a slower drug release. The average microemulsion droplet size from the optimal sponge formulation was 34.80 ± 0.1 nm, and the curcumin was almost completely released within 120 min. The AUC after oral administration of the liquid and solid SME‐Cur were 7‐ and 5‐fold greater than that of the curcumin powder in the rabbit, respectively. The results demonstrated that the HPMC‐based sponges loaded with SME‐Cur could be efficiently used to enhance the oral bioavailability and might be useful as they could be administered at a lower dose compared to normal curcumin powder. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42966.  相似文献   
2.
3.
Achieving cellular internalization and endosomal escape remains a major challenge for many antitumor therapeutics, especially macromolecular drugs. Viral drug carriers are reported for efficient intracellular delivery, but with limited choices of payloads. In this study, a novel polymeric nanoparticle (ADMAP) is developed, resembling the structure and functional features of a virus. ADMAP is synthesized by grafting endosomolytic poly(lauryl methacrylate‐co‐methacrylic acid) on acetalated dextran. The endosomolytic polymer mimics the capsid protein for endosomal escape, and acetalated dextran resembles the viral core for accommodating payloads. After polymer synthesis, the subsequent controlled nanoprecipitation on a microfluidic device yields uniform nanoparticles with high encapsulation efficiency. At late endosomal pH (5.0), the ADMAP particles successfully destabilize endosomal membranes and release the drug payloads synergistically, resulting in a greater therapeutic efficacy compared with that of free anticancer drugs. Further conjugation of a tumor‐penetrating peptide enhances the antitumor efficacy toward 3D spheroids and finally leads to spheroid disintegration. The unique structure along with the synergistic endosomal escape and drug release make ADMAP nanoparticles favorable for intracellular delivery of antitumor therapeutics.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号