首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   17篇
  国内免费   1篇
电工技术   31篇
综合类   1篇
化学工业   123篇
金属工艺   10篇
机械仪表   11篇
建筑科学   13篇
能源动力   25篇
轻工业   39篇
石油天然气   11篇
无线电   24篇
一般工业技术   53篇
冶金工业   2篇
原子能技术   18篇
自动化技术   50篇
  2023年   4篇
  2022年   16篇
  2021年   25篇
  2020年   7篇
  2019年   13篇
  2018年   12篇
  2017年   14篇
  2016年   20篇
  2015年   15篇
  2014年   12篇
  2013年   24篇
  2012年   23篇
  2011年   37篇
  2010年   20篇
  2009年   27篇
  2008年   18篇
  2007年   27篇
  2006年   11篇
  2005年   10篇
  2004年   13篇
  2003年   9篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1980年   2篇
  1979年   4篇
  1977年   4篇
  1974年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
1.
A development of 170GHz/500kW level gyrotron was carried out as R&D work of ITER. The oscillation mode is TE31,8. In a short pulse experiment, the maximum power of 750kW was achieved at 85kV/40A. The efficiency was 22%. In the depressed collector operation, 500kW/36%/50ms was obtained. The maximum efficiency of 40% was obtained at PRF=470kW whereas the power decrease by the electron trapping was observed. Pulse extension was done up to 10s at PRF=170kW with the depressed collector operation. The power was limited by the temperature increase of the output window.  相似文献   
2.
Abstract— MgO thin film is currently used as a surface protective layer for dielectric materials because MgO has a high resistance during ion sputtering and exhibits effective secondary electron emission. The secondary‐electron‐emission coefficient γ of MgO is high for Ne ions; however, it is low for Xe ions. The Xe content of the discharge gas of PDPs needs to be raised in order to increase the luminous efficiency. Thus, the development of high‐γ materials replacing MgO is required. The discharge properties and chemical surface stability of SrO containing Zr (SrZrO) as the candidate high‐γ protective layer for noble PDPs have been characterized. SrZrO films have superior chemical stability, especially the resistance to carbonation because of the existence of a few adsorption sites due to their amorphous structure. The firing voltage is 60 V lower than that of MgO films for a discharge gas of Ne/Xe = 85/15 at 60 kPa.  相似文献   
3.
4.
5.
A transparent and super-hydrophilic TiO2 film with high adhesion was prepared by simple self-assembly methods from aqueous solution at low temperature. The excellent adherence of TiO2 films was accomplished by introducing a buffer layer with sulfonate-modified surfaces and nanoasperity. Moreover, the structure and morphology of the films were successfully controlled by deposition temperature and the pH of precursor solution. By optimizing the several parameters of solution as well as the surface functionality of the substrate, the nano-structured TiO2 film with high adhesion showed a water contact angle of below 5° and the relative transmittance to slide glass of over 90%. The fabricated TiO2 film deposited under the optimized condition is not removed from substrate after several Scotch tape (STT) tests and immersing into several kinds of solvent.  相似文献   
6.

A Cu on polyimide (COP) substrate was proposed as a MEMS material, and the fabrication process for a flexible thermal MEMS sensor was developed. The COP substrate application to MEMS devices has the advantage that typical MEMS structures fabricated in a SOI wafer in the past—such as a diaphragm, a beam, a heater formed on a diaphragm—can also be easily produced in the COP substrate in the flexible fashion. These structures can be used as the sensing element in various physical sensors, such as flow, acceleration, and shear stress sensors. A flexible thermal MEMS sensor was produced by using a lift-off process and sacrificial etching of a copper layer on the COP substrate. A metal film working as a flow sensing element was formed on a thin polyimide membrane produced by the sacrificial etching. The fabricated flexible thermal MEMS sensor was used as a flow sensor, and its characteristics were evaluated. The obtained sensor output versus the flow rate curve closely matched the approximate curve derived using King’s law. The rising and falling response times obtained were 0.50 and 0.67 s, respectively.

  相似文献   
7.
采用气相色谱定量测量了聚氯乙烯(PVC)、乙丙橡胶(EPR)和氯磺化聚乙烯(CSM)等线缆绝缘材料经辐照后在不同温度下热老化过程中的O2消耗量.对实验数据进行了反应动力学分析,发现线缆绝缘材料的热氧化降解反应为一级反应.同时获得了不同温度下的反应常数,并与根据Arrhenius 方程计算的理论结果进行了比较.  相似文献   
8.
Non-alcoholic steatohepatitis (NASH) has pathological characteristics similar to those of alcoholic hepatitis, despite the absence of a drinking history. The greatest threat associated with NASH is its progression to cirrhosis and hepatocellular carcinoma. The pathophysiology of NASH is not fully understood to date. In this study, we investigated the pathophysiology of NASH from the perspective of glycolysis and the Warburg effect, with a particular focus on microRNA regulation in liver-specific macrophages, also known as Kupffer cells. We established NASH rat and mouse models and evaluated various parameters including the liver-to-body weight ratio, blood indexes, and histopathology. A quantitative phosphoproteomic analysis of the NASH rat model livers revealed the activation of glycolysis. Western blotting and immunohistochemistry results indicated that the expression of pyruvate kinase muscle 2 (PKM2), a rate-limiting enzyme of glycolysis, was upregulated in the liver tissues of both NASH models. Moreover, increases in PKM2 and p-PKM2 were observed in the early phase of NASH. These observations were partially induced by the downregulation of microRNA122-5p (miR-122-5p) and occurred particularly in the Kupffer cells. Our results suggest that the activation of glycolysis in Kupffer cells during NASH was partially induced by the upregulation of PKM2 via miR-122-5p suppression.  相似文献   
9.
KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells. Since KIT is activated by overexpression or mutation and plays an important role in the development of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling via next-generation sequencing has shown that several genes that are mutated in patients with AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treatment using genomic data will improve treatment outcomes for AML patients. This paper presents (1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT mutations from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is becoming more common, KIT mutations are attractive novel molecular targets in AML.  相似文献   
10.
A highly active iron–nitrogen‐doped carbon nanotube catalyst for the oxygen reduction reaction (ORR) is produced by employing vertically aligned carbon nanotubes (VA‐CNT) with a high specific surface area and iron(II) phthalocyanine (FePc) molecules. Pyrolyzing the composite easily transforms the adsorbed FePc molecules into a large number of iron coordinated nitrogen functionalized nanographene (Fe–N–C) structures, which serve as ORR active sites on the individual VA‐CNT surfaces. The catalyst exhibits a high ORR activity, with onset and half‐wave potentials of 0.97 and 0.79 V, respectively, versus reversible hydrogen electrode, a high selectivity of above 3.92 electron transfer number, and a high electrochemical durability, with a 17 mV negative shift of E 1/2 after 10 000 cycles in an oxygen‐saturated 0.5 m H2SO4 solution. The catalyst demonstrates one of the highest ORR performances in previously reported any‐nanotube‐based catalysts in acid media. The excellent ORR performance can be attributed to the formation of a greater number of catalytically active Fe–N–C centers and their dense immobilization on individual tubes, in addition to more efficient mass transport due to the mesoporous nature of the VA‐CNTs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号