首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
一般工业技术   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
针对直升机自动倾斜器滚动轴承工况复杂、噪声干扰大,造成故障诊断效果不佳的问题,提出一种基于深度卷积自编码器(Deep Convolutional AutoEncoder,DCAE)和卷积神经网络(Convolutional Neural Network,CNN)的轴承故障诊断方法。该方法首先采用小波变换方法构造不同状态下振动信号的时频图,然后使用DCAE对时频图进行图像去噪,最后利用CNN对去噪后的时频图进行故障分类。利用课题组和美国凯斯西储大学的滚动轴承故障数据开展诊断实验,并与CNN、堆叠降噪自编码器(Stacked Denoise AutoEncoder,SDAE)两种深度学习方法进行对比,结果表明,该方法在高噪声环境下具有更高的故障识别率。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号