排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
针对常见的机械故障进行分析研究,以转子动平衡为例,给出可通用的机械故障分析系统方法.在LabVIEW平台上应用希尔伯特-黄变换方法,对机械故障中的转子动平衡振动试验数据进行时频联合域分析,得出具体分析图.利用LabVIEW平台的虚拟示波器产生谐波对系统进行验证.通过本系统对“BENTILEY”实验台的转子动平衡振动数据进行分析处理,为研究转子动平衡故障提供参考图形数据.结果表明:该系统是可行的. 相似文献
2.
风力发电机往往工作在气候条件恶劣的环境中。风机叶片受到风沙、雨水的侵蚀会出现裂纹,裂纹在产生后会逐渐扩大,尽早发现叶片裂纹能给工作人员更多的维修时间。针对叶片微小裂纹难以发现的问题,文章提出了一种利用无人机拍摄的叶片图像结合机器学习进行裂纹检测的方法。对原始图像预处理后,进行特征向量的提取。提出一种用改进的萤火虫算法优化支持向量机(SVM)的裂纹检测模型。为增加萤火虫算法的全局搜索能力,引进了混沌映射生成种群初始位置,同时采用自适应步长以更好地趋近最优解。以云南某风电场的数据离线训练和测试,结果表明,所提的模型在检测精度和稳定性上均优于用粒子群算法(PSO)、遗传算法(GA)优化的SVM。 相似文献
3.
为降低风电功率序列波动性并提高风电功率预测精度,提出一种基于SSA-VMD-SE-KELM和蒙特卡洛法的组合风电功率区间预测模型。采用麻雀搜索算法(SSA)优化后的变分模态分解(VMD)算法将功率序列分解为理想数量子序列,通过计算样本熵(SE)对其重构,得到新子序列分别建立核极限学习机(KELM)点预测模型,叠加各点预测结果得到最终点预测结果及功率误差序列,使用蒙特卡洛法随机抽样得到对应置信度下的预测区间。以实际采集到的历史数据为例进行预测,实验结果表明:与传统模型相比,此模型所得功率预测区间紧密跟随风电功率变化趋势,其区间覆盖率更高、平均宽度更窄。 相似文献
4.
针对风机叶片表面缺陷检测识别率低、且易受光照影响的特点。提出一种基于卷积神经网络特征融合局部二值模式特征及核极限学习机的风机叶片表面缺陷检测方法。利用引入注意力机制的卷积神经网络提取图像深层次信息,然后提取描述图像浅层纹理信息的局部二值模式特征,采用主成分分析方法降低局部二值模式特征维度;将两种从不同层面描述图像的互补特征串行融合。用改进的麻雀搜索算法优化核极限学习机参数,利用融合的特征训练模型,得到最优模型进行缺陷识别。通过实验,在自建数据集训练后的分类准确率达到了97.5%,kappa系数达到95.1。相比利用单一特征检测,分类准确率有明显的提高。经风电场实际验证,本模型的平均分类准确率为96.3%,Kappa系数为94.5,漏报率明显降低。 相似文献
5.
目的 针对风机运行安全问题,建立风机叶片表面腐蚀速率预测模型,实现对风机叶片安全的预警。方法 对风机叶片腐蚀的原理进行分析,探讨复合材料的腐蚀机理,根据现场实测的数据对叶片表面腐蚀速率进行预测。针对海鸥算法(SOA)易陷入局部最优的问题提出了相应的改进方案,采用logistics混沌映射取代了随机选取海鸥初始位置的方式,提高海鸥初始位置的质量;在海鸥位置更新方式中引入了Levy飞行策略,使得海鸥算法有更强的全局搜索能力;采用Metropolis准则,使处于较差位置的海鸥个体也有一定概率被接受,以提高种群多样性。将改进的海鸥算法用于对核极限学习机(KELM)参数的寻优,建立ISOA?KELM风机叶片表面腐蚀速率预测模型。对该模型进行实验,并与SOA?KELM、PSO?KELM、GA?KELM进行预测误差对比。结果 使用ISOA优化KELM提升了KELM的预测精度,获得的平均绝对误差(MAE)为0.457、均方误差(MSE)为0.280、确定系数(R?square)为0.959,均优于SOA?KELM、PSO?KELM、GA?KELM对比模型。结论 用ISOA?KLEM模型建立的风机叶片表面腐蚀速率模型具有更高的预测精度,基于相关环境数据预测的腐蚀速率对风电场的维修计划具有良好的指导作用。 相似文献
6.
论文对标准热电偶手动检定的传统方法进行了分析,指出其不足之处,论述了一种新型的标准热电偶微机自动检定系统.该系统选用先进的集成数据采集卡和功能强大的智能仪表实现检定数据的自动采集,应用程序选用Dlephi编写,可视性强,操作灵活方便,可自动完成标准热电偶检定的全过程. 相似文献
7.
为提高光伏转化率,设计光电传感器跟踪与太阳运行轨迹跟踪相结合的双轴交错联合跟踪控制系统。以LOGO!240 RC控制器为核心搭建太阳能电池板跟踪控制系统,并对太阳跟踪控制算法进行优化。投运结果表明:系统功耗和电机启停频率均有所减少,电机寿命延长,同时光伏转化率有明显提高。 相似文献
8.
为降低风电功率序列波动性并提高风电功率预测精度,提出一种基于SSA-VMD-SE-KELM和蒙特卡洛法的组合风电功率区间预测模型。采用麻雀搜索算法(SSA)优化后的变分模态分解(VMD)算法将功率序列分解为理想数量子序列,通过计算样本熵(SE)对其重构,得到新子序列分别建立核极限学习机(KELM)点预测模型,叠加各点预测结果得到最终点预测结果及功率误差序列,使用蒙特卡洛法随机抽样得到对应置信度下的预测区间。以实际采集到的历史数据为例进行预测,实验结果表明:与传统模型相比,此模型所得功率预测区间紧密跟随风电功率变化趋势,其区间覆盖率更高、平均宽度更窄。 相似文献
9.
10.
风力发电机往往工作在气候条件恶劣的环境中。风机叶片受到风沙、雨水的侵蚀会出现裂纹,裂纹在产生后会逐渐扩大,尽早发现叶片裂纹能给工作人员更多的维修时间。针对叶片微小裂纹难以发现的问题,文章提出了一种利用无人机拍摄的叶片图像结合机器学习进行裂纹检测的方法。对原始图像预处理后,进行特征向量的提取。提出一种用改进的萤火虫算法优化支持向量机(SVM)的裂纹检测模型。为增加萤火虫算法的全局搜索能力,引进了混沌映射生成种群初始位置,同时采用自适应步长以更好地趋近最优解。以云南某风电场的数据离线训练和测试,结果表明,所提的模型在检测精度和稳定性上均优于用粒子群算法(PSO)、遗传算法(GA)优化的SVM。 相似文献