首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   771篇
  免费   44篇
  国内免费   9篇
电工技术   17篇
综合类   4篇
化学工业   212篇
金属工艺   22篇
机械仪表   24篇
建筑科学   36篇
矿业工程   1篇
能源动力   57篇
轻工业   48篇
水利工程   6篇
石油天然气   4篇
无线电   65篇
一般工业技术   144篇
冶金工业   26篇
原子能技术   10篇
自动化技术   148篇
  2024年   5篇
  2023年   13篇
  2022年   33篇
  2021年   58篇
  2020年   61篇
  2019年   42篇
  2018年   86篇
  2017年   49篇
  2016年   45篇
  2015年   28篇
  2014年   57篇
  2013年   97篇
  2012年   58篇
  2011年   61篇
  2010年   41篇
  2009年   33篇
  2008年   9篇
  2007年   13篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  1999年   2篇
  1996年   1篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有824条查询结果,搜索用时 0 毫秒
1.
Kim  Tak H.  Sirdaarta  Joseph P.  Zhang  Qian  Eftekhari  Ehsan  St. John  James  Kennedy  Derek  Cock  Ian E.  Li  Qin 《Nano Research》2018,11(4):2204-2216
Nano Research - The toxicity of nanoparticles in a biological system is an integration of effects arising from surface functionality, particle size, ionic dissolution, etc. This complexity suggests...  相似文献   
2.
The objective of this study is to investigate the effects of geometrical and physical parameters on failure modes and failure loads in unidirectional polymeric matrix composites with two serial pin loaded holes, analytically and experimentally. It is assumed that all of unidirectional fibers in the laminate lie in one direction while loaded by a load p 0 at infinity, parallel to the direction of the fibers. To derive equilibrium equations based on a Shear-Lag theory, a rectangular arrangement of fibers is considered and with the proper use of boundary and boundness conditions, stress and displacement fields are computed within the laminate, along with the surrounding pinholes. Finally by using the Hashin criterion failure modes and failure loads are estimated. To validate analytical results based on shear-lag theory, an experimental program is carried out. A very good agreement is observed between two procedures. Based on results, in small sizes of two pins, the dominant failure mode is bearing and with the increasing of hole sizes, failure modes are changed to tension and shear modes.  相似文献   
3.
Recent convergence of the 3D printing of tissue‐like bioinks and regenerative medicine offers promise in the high‐throughput engineering of in vitro tissue models and organoids for drug screening and discovery research, and of potentially implantable neo‐tissues with tailored structural, biological, and mechanical properties. However, the current printing approaches are not compatible with collagen, the native scaffolding material. Herein, a unique biofabrication approach that uses automated gel aspiration‐ejection (GAE) is reported to potentially overcome these challenges. Automated‐GAE generates highly defined, aligned, dense collagen gel bioinks of various geometries (i.e., cylindrical, quadrangular, and tubular), dimensions, as well as tunable microstructural and mechanical properties that modulate seeded cellular responses. By densifying initial naturally derived reconstituted collagen hydrogels incorporating cells, automated‐GAE generates mini‐tissue building blocks with tailored protein fibril density and alignment, as well as cell loading, density and orientation according to the intended use. Surprisingly, a simple mathematical relationship defining the bioink compaction factor is found to be highly effective in predicting the initial and temporal properties of the bioinks in culture. Therefore, automated‐GAE will potentially also enable a fourth dimension to biofabrication, where cell–cell communications and cell‐extracellular matrix interactions as a function of time in culture can be predicted and modeled.  相似文献   
4.

Wireless body area networks (WBANs) are deal with wireless networks in the human body. We describe the performance analysis of dual-hop cooperative relaying systems employing amplify-and-forward (AF) technique in WBANs over independent and nonnecessary identically distributed Gamma fading channels. More specifically, we present closed-form derivations of the outage probabilities (OP), symbol error probabilities (SEP) and ergodic capacity (EC) for fixed gain and channel state information (CSI)-assisted relaying techniques at arbitrary signal-to-noise-ratios (SNRs). We also deduce novel expressions in the high SNR region. By doing so, we can quantify the performance of system by the diversity and coding gains. Using the derived expressions as a starting point and for the case of Exponential fading, we consider three practical optimization scenarios. They are optimal relay position with fixed power allocation, power allocation under the fixed location of the relay and joint optimization of power allocation and relay position under a transmit power constraint. The Monte Carlo simulations are used to validate the accuracy of our derivations, where it is demonstrated that the proposed adaptive allocation method significantly outperforms the fixed allocation method.

  相似文献   
5.
This paper presents a novel approach for estimating the distribution of the incoming waves at the mobile unit antenna, i.e. the scattering distribution, in a typical micro-cellular system. This estimate is vital in determining many system parameters of interest as well as designing unbiased estimators for the velocity of mobile units in micro-cellular systems. The proposed approach deploys the zero-crossing rates of the quadrature components and the instantaneous frequency of the received signal at the mobile unit to estimate the scattering distribution. We also propose a new model for simulating multipath fading channels with non-isotropic scattering. We use the channel simulator to evaluate the performance of the proposed estimator for the scattering distribution. Simulation results show that proposed estimator exhibits small bias and root mean square error.  相似文献   
6.
In this paper, a new robust problem is proposed for relay beamforming in relay system with stochastic perturbation on channels of multi user and relay network. The robust problem aims to minimize the transmission power of relay nodes while the imperfect channel information (CSI) injects stochastic channel uncertainties to the parameters of optimization problem. In the power minimization framework, the relays amplification weights and phases are optimized assuming the availability of Gaussian channel distribution. The power sum of all relays is minimized while the outage probability of the instantaneous capacity (or SINR) at each link is above the outage capacity (or SINR) for each user. The robust problem is a nonconvex SDP problem with Rank constraint. Due to the nonconvexity of the original problem, three suboptimal problems are proposed. Simulation and numerical results are presented to compare the performance of the three proposed solutions with the existing worst case robust method.  相似文献   
7.
Vehicular ad-hoc network (VANET) is characterized as a highly dynamic wireless network due to the dynamic connectivity of the network nodes. To achieve better connectivity under such dynamic conditions, an optimal transmission strategy is required to direct the information flow between the nodes. Earlier studies on VANET’s overlook the characteristics of heterogeneity in vehicle types, traffic structure, flow for density estimation, and connectivity observation. In this paper, we have proposed a heterogeneous traffic flow based dual ring connectivity model to enhance both the message disseminations and network connectivity. In our proposed model the availability of different types of vehicles on the road, such as, cars, buses, etc., are introduced in an attempt to propose a new communication structure for moving vehicles in VANETl under cooperative transmission in heterogeneous traffic flow. The model is based on the dual-ring structure that forms the primary and secondary rings of vehicular communication. During message disseminations, Slow speed vehicles (buses) on the secondary ring provide a backup path of communication for high speed vehicles (cars) moving on the primary ring. The Slow speed vehicles act as the intermediate nodes in the aforementioned connectivity model that helps improve the network coverage and end-to-end data delivery. For the evaluation and the implementation of dual-ring model a clustering routing scheme warning energy aware cluster-head is adopted that also caters for the energy optimization. The implemented dual-ring message delivery scheme under the cluster-head based routing technique does show improved network coverage and connectivity dynamics even under the multi-hop communication system.  相似文献   
8.
Active soft materials that change shape on demand are of interest for a myriad of applications, including soft robotics, biomedical devices, and adaptive systems. Despite recent advances, the ability to rapidly design and fabricate active matter in complex, reconfigurable layouts remains challenging. Here, the 3D printing of core-sheath-shell dielectric elastomer fibers (DEF) and fiber bundles with programmable actuation is reported. Complex shape morphing responses are achieved by printing individually addressable fibers within 3D architectures, including vertical coils and fiber bundles. These DEF devices exhibit resonance frequencies up to 700 Hz and lifetimes exceeding 2.6 million cycles. The multimaterial, multicore-shell 3D printing method opens new avenues for creating active soft matter with fast programable actuation.  相似文献   
9.
This paper surveys recent research on CMOS silicon avalanche photodiodes (SiAPD) and presents the design of a SiAPD based photoreceiver dedicated to near-infrared spectroscopy (NIRS) application. Near-infrared spectroscopy provides an inexpensive, non-invasive, and portable means to image brain function, and is one of the most efficient diagnostic techniques of different neurological diseases. In NIRS system, brain tissue is penetrated by near-infrared (NIR) radiation and the reflected signal is captured by a photodiode. Since the reflected NIR signal has very low amplitude, SiAPD is a better choice than regular photodiode for NIR signal detection due to SiAPD`s ability to amplify the photo generated signal by avalanche multiplication. Design requirements of using CMOS SiAPDs for NIR light detection are discussed, and the challenges of fabricating SiAPDs using standard CMOS process are addressed. Performances of state-of-the-art CMOS SiAPDs with different device structures are summarized and compared. The efficacy of the proposed SiAPD based photoreceiver is confirmed by post layout simulation. Finally, the SiAPD and its associated circuits has been implemented in one chip using 0.35 μm standard CMOS technology for an integrated NIRS system.  相似文献   
10.
A wide variety of environmental factors including physical and biochemical signals are responsible for stem cell behavior and function. In particular, matrix elasticity and cell shape have been shown to determine stem cell function, yet little is known about the interplay between how these physical cues control cell differentiation. For the first time, by using ultraviolet (UV) lithography to pattern poly(ethylene) glycol (PEG) hydrogels, it is possible to manufacture microenvironments capable of parsing the effects of matrix elasticity, cell shape, and cell size in order to explore the relationship between matrix elasticity and cell shape in mesenchymal stem cell (MSC) lineage commitment. These data show that cells cultured on 1000 μm2 circles, squares, and rectangles are primarily adipogenic lineage regardless of matrix elasticity, while cells cultured on 2500 and 5000 μm2 shapes more heavily depend on shape and elasticity for lineage specification. It is further characterized how modifying the cell cytoskeleton through pharmacological inhibitors can modify cell behavior. By showing MSC lineage commitment relationships due to physical signals, this study highlights the importance of cell shape and matrix elasticity in further understanding stem cell behavior for future tissue engineering strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号