A new method to compensate three-stage amplifier to drive large capacitive loads is proposed in this paper. Gain Bandwidth Product is increased due to use an attenuator in the path of miller compensation capacitor. Analysis demonstrates that the gain bandwidth product will be improved significantly without using large compensation capacitor. Using a feedforward path is deployed to control a left half plane zero which is able to cancel out first non-dominant pole. A three stage amplifier is simulated in a 0.18 μm CMOS technology. The purpose of the design is to compensate three-stage amplifier loading 1000 pF capacitive load. The simulated amplifier with a 1000 pF capacitive load is performed in 3.3 MHz gain bandwidth product, and phase margin of 50. The compensation capacitor is reduced extremely compared to conventional nested miller compensation methods. Since transconductance of each stage is not distinct, and it is close to one another; as a result, this method is suitable low power design methodology. 相似文献
This paper presents an automatic point matching algorithm for establishing accurate match correspondences in two or more images. The proposed algorithm utilizes a group of feature points to explore their geometrical relationship in a graph arrangement. The algorithm starts with a set of matches (including outliers) between the two images. A set of nondirectional graphs is then generated for each feature and its K nearest matches (chosen from the initial set). Using the angular distances between edges that connect a feature point to its K nearest neighbors in the graph, the algorithm finds a graph in the second image that is similar to the first graph. In the case of a graph including outliers, the algorithm removes such outliers (one by one, according to their strength) from the graph and re-evaluates the angles until the two graphs are matched or discarded. This is a simple intuitive and robust algorithm that is inspired by a previous work. Experimental results demonstrate the superior performance of this algorithm under various conditions, such as rigid and nonrigid transformations, ambiguity due to partial occlusions or match correspondence multiplicity, scale, and larger view variation. 相似文献
High‐quality epitaxy consisting of Al1?xGaxN/Al1?yGayN multiple quantum wells (MQWs) with sharp interfaces and emitting at ≈280 nm is successfully grown on sapphire with a misorientation angle as large as 4°. Wavy MQWs are observed due to step bunching formed at the step edges. A thicker QW width accompanied by a greater accumulation of gallium near the macrostep edge than that on the flat‐terrace is observed on 4° misoriented sapphire, leading to the generation of potential minima with respect to their neighboring QWs. Consequently, a significantly enhanced photoluminescence intensity (at least ten times higher), improved internal quantum efficiency (six times higher at low excitation laser power), and a much longer carrier lifetime are achieved. Importantly, the wafer‐level output‐power of the ultraviolet light emitting diodes on 4° misoriented substrate is nearly increased by 2–3 times. This gain is attributed to the introduction of compositional inhomogeneities in AlGaN alloys induced by gallium accumulation at the step‐bunched region thus forming a lateral potential well for carrier localization. The experimental results are further confirmed by a numerical modeling in which a 3D carrier confinement mechanism is proposed. Herein, the compositional modulation in active region arising from the substrate misorientation provides a promising approach in the pursuit of high‐efficient ultraviolet emitters. 相似文献
There exist only a few papers in the literature which target the problem of “proposing a secure designated server identity-based encryption with keyword search scheme.” In this paper, we prove that they all suffer from security issues, and therefore, this challenging problem still remains open. 相似文献
The fracture toughness and deformation mechanism of PP/CaCO3 (15 wt.%) composites were studied and related to load-bearing capacity of the particles. To alter the load-bearing capacity of the particles, different particle sizes (0.07–7 μm) with or without stearic acid coating were incorporated. The fracture toughness of the composites was determined using J-Integral method and the deformation mechanism was studied by transmission optical microscopy of the crack tip damage zone. It was observed that the load-bearing capacity of the particles decreased by reduction of particle size and application of coating. A linear relationship between normalized fracture toughness and inverse of load-bearing capacity of particles was found. The crack tip damage zone in composites, which consists in massive crazing, further grows by reduction in load-bearing capacity. 相似文献
This work aimed to investigate the drying behavior of melon seed during combined fluidized bed-microwave drying system. Three drying air temperatures (40, 55 and 70 °C), three microwave powers (270, 450 and 630 W) and three air velocities (0.8, 1.5 and 2.3 m/s) were tested. Five mathematical models were selected to fit the experimental data for drying kinetics, and the results revealed that the Aghbashloo et al. model exhibited, in all cases, the best performance in fitting the experimental data (R2 varying from 0.99088 to 0.99998; χ2 from 0.00000 to 0.00185 and RMSE from 0.02289 to 0.82316). Calculated values of moisture diffusivity for dried melon seed varied from a minimum of 6.51 × 10?10 to a maximum of 6.59 × 10?9 m2/s under the tested drying conditions. Moisture diffusivity values increased as air temperature and microwave power was increased. Shrinkage values were calculated and found to vary in the range from 46.99 to 15.09 %. 相似文献
Hydropower energy generation depends on the available water resources. Therefore, planning and operation of the water resource systems are paramount tasks for energy management. Since reservoirs are one of the important components of water resources systems, extracting optimal operating policies for proper management of energy generated from these systems is an imperative step. Optimizing reservoir system operation (ORSO) is a non-linear, large-scale, and non-convex problem with a large number of constraints and decision variables. To solve ORSO problem effectively, a robust diversity-based, sine-cosine algorithm (RDB-SCA) is developed in the present study by introducing several strategies to balance the global exploration and local exploitation ability and to achieve accurate and reliable solutions. An efficient linear operation rule is coupled with the RDB-SCA to maximize the energy generation. The proposed method is then applied to a real-world, multi-reservoir system to extract optimal operational policies and, consequently, maximize the energy production. It is shown that the RDB-SCA is able to generate 24, 14, and 6% more energy than the original SCA, respectively for 2-, 3-, and 4-reservoir systems. The present findings are useful to suggest guidelines for efficient operation of hydropower multi-reservoir systems. This paper is supported by https://imanahmadianfar.com/codes.