首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1190篇
  免费   83篇
  国内免费   8篇
电工技术   34篇
综合类   9篇
化学工业   271篇
金属工艺   52篇
机械仪表   61篇
建筑科学   38篇
矿业工程   10篇
能源动力   71篇
轻工业   100篇
水利工程   29篇
石油天然气   31篇
无线电   115篇
一般工业技术   155篇
冶金工业   49篇
原子能技术   4篇
自动化技术   252篇
  2024年   3篇
  2023年   15篇
  2022年   42篇
  2021年   69篇
  2020年   83篇
  2019年   89篇
  2018年   111篇
  2017年   104篇
  2016年   99篇
  2015年   45篇
  2014年   85篇
  2013年   132篇
  2012年   96篇
  2011年   89篇
  2010年   60篇
  2009年   50篇
  2008年   37篇
  2007年   24篇
  2006年   13篇
  2005年   2篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有1281条查询结果,搜索用时 15 毫秒
1.
Telecommunication Systems - This paper analyzes the carrier-to-interference ratio (CIR) of the so-called shotgun cellular systems (SCSs) in $$\tau $$ dimensions ( $$\tau =1, 2,$$ and 3). SCSs are...  相似文献   
2.
Wireless Personal Communications - One of the important objectives of underwater acoustic sensor network is to extend the lifespan of a network which depends on the topology control mechanisms....  相似文献   
3.
Shallow underwater acoustic (UWA) channel exhibits rapid temporal variations, extensive multipath spreads, and severe frequency-dependent attenuations. So, high data rate communication with high spectral efficiency in this challenging medium requires efficient system design. Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO–OFDM) is a promising solution for reliable transmission over highly dispersive channels. In this paper, we study the equalization of shallow UWA channels when a MIMO–OFDM transmission scheme is used. We address simultaneously the long multipath spread and rapid temporal variations of the channel. These features lead to interblock interference (IBI) along with intercarrier interference (ICI), thereby degrading the system performance. We describe the underwater channel using a general basis expansion model (BEM), and propose time-domain block equalization techniques to jointly eliminate the IBI and ICI. The block equalizers are derived based on minimum mean-square error and zero-forcing criteria. We also develop a novel approach to design two time-domain per-tone equalizers, which minimize bit error rate or mean-square error in each subcarrier. We simulate a typical shallow UWA channel to demonstrate the desirable performance of the proposed equalization techniques in Rayleigh and Rician fading channels.  相似文献   
4.
5.
In this paper a novel high-frequency fully differential pure current mode current operational amplifier (COA) is proposed that is, to the authors’ knowledge, the first pure MOSFET Current Mode Logic (MCML) COA in the world, so far. Doing fully current mode signal processing and avoiding high impedance nodes in the signal path grant the proposed COA such outstanding properties as high current gain, broad bandwidth, and low voltage and low-power consumption. The principle operation of the block is discussed and its outstanding properties are verified by HSPICE simulations using TSMC \(0.18\,\upmu \hbox {m}\) CMOS technology parameters. Pre-layout and Post-layout both plus Monte Carlo simulations are performed under supply voltages of \(\pm 0.75\,\hbox {V}\) to investigate its robust performance at the presence of fabrication non-idealities. The pre-layout plus Monte Carlo results are as; 93 dB current gain, \(8.2\,\hbox {MHz}\,\, f_{-3\,\text {dB}}, 89^{\circ }\) phase margin, 137 dB CMRR, 13 \(\Omega \) input impedance, \(89\,\hbox {M}\Omega \) output impedance and 1.37 mW consumed power. Also post-layout plus Monte Carlo simulation results (that are generally believed to be as reliable and practical as are measuring ones) are extracted that favorably show(in abovementioned order of pre-layout) 88 dB current gain, \(6.9\,\hbox {MHz} f_{-3\text {db}} , 131^{\circ }\) phase margin and 96 dB CMRR, \(22\,\Omega \) input impedance, \(33\,\hbox {M}\Omega \) output impedance and only 1.43 mW consumed power. These results altogether prove both excellent quality and well resistance of the proposed COA against technology and fabrication non-idealities.  相似文献   
6.
7.
Fuzzy-based multiscale edge detection   总被引:9,自引:0,他引:9  
A new fuzzy-based multiscale edge detection technique is presented. The proposed approach achieves optimal edge detection using the wavelet decomposition of the original signal followed by a novel fuzzy-based decision technique that is applied across the scales. Results indicate a significant improvement in locating edges compared to other multiscale approaches.  相似文献   
8.
A voltage controlled delay cell with wide frequency range is presented in this paper. The delay-line which is resulted by connecting five series of delay cells generating a wide range of delay from 1.9 to 13.24 ns. It can be used in an analog delay locked loop. The linear characteristic of the circuit with respect to the conventional delay line structures is improved, and a better performance of noise is obtained using differential structure. This circuit is designed by ADS software and TSMC CMOS 0.18 μm technology, with supply voltage 1.8 V. By changing control voltage from 0.335 to 1.8 V in delay line, a wide range of frequency from 75.52 to 917.43 MHz will be covered. Simulation results show that the proposed delay line has power consumption of maximum 3.77 mW at frequency of 75.52 MHz. It also shows that increasing of frequency will reduce power dissipation which is the one of the main characteristics of this novel circuit. Moreover, the delay locked loop which uses these delay cells has a very high lock speed so that the maximum lock time in just five clock cycles.  相似文献   
9.
An efficient procedure for the fabrication of highly conductive carbon nanotube/graphene hybrid yarns has been developed. To start, arrays of vertically aligned multi‐walled carbon nanotubes (MWNT) are converted into indefinitely long MWNT sheets by drawing. Graphene flakes are then deposited onto the MWNT sheets by electrospinning to form a composite structure that is transformed into yarn filaments by twisting. The process is scalable for yarn fabrication on an industrial scale. Prepared materials are characterized by electron microscopy, electrical, mechanical, and electrochemical measurements. It is found that the electrical conductivity of the composite MWNT‐graphene yarns is over 900 S/cm. This value is 400% and 1250% higher than electrical conductivity of pristine MWNT yarns or graphene paper, respectively. The increase in conductivity is asssociated with the increase of the density of states near the Fermi level by a factor of 100 and a decrease in the hopping distance by an order of magnitude induced by grapene flakes. It is found also that the MWNT‐graphene yarn has a strong electrochemical response with specific capacitance in excess of 111 Fg?1. This value is 425% higher than the capacitance of pristine MWNT yarn. Such substantial improvements of key properties of the hybrid material can be associated with the synergy of MWNT and graphene layers in the yarn structure. Prepared hybrid yarns can benefit such applications as high‐performance supercapacitors, batteries, high current capable cables, and artificial muscles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号