首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   4篇
化学工业   38篇
金属工艺   17篇
机械仪表   7篇
建筑科学   1篇
轻工业   4篇
石油天然气   53篇
无线电   23篇
一般工业技术   36篇
冶金工业   12篇
原子能技术   3篇
  2022年   8篇
  2021年   8篇
  2020年   7篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1977年   5篇
  1976年   3篇
  1975年   1篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
  1970年   2篇
  1969年   1篇
  1965年   1篇
排序方式: 共有194条查询结果,搜索用时 0 毫秒
1.
Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 17–20, May, 1990.  相似文献   
2.
3.
Temperature dependences of the drift mobilities of electrons and holes are investigated in chalcogenide-glass semiconductors with composition Se95As5, both without impurities and with the impurities Ag and Br. The data obtained indicate that the localized states that control the transport of charge carriers are U -centers, and that the change in the magnitude of the drift mobility after doping is caused by a change in the concentration of these centers. Estimates of the concentrations of positive and negatively charged intrinsic defects show that their values are similar, equalling ∼1016 cm−3 in impurity-free glasses with the composition Se95As5 and lying in the range 1013–1017 cm−3 when these glasses are doped with Ag, Br, and Cl. It is established that halogen impurities change the concentration of U -centers most strongly (by two to three orders of magnitude). Analysis of the data obtained shows that the percentage of electrically active Br and Cl impurity atoms is 1%, while for Ag atoms it is 10−2%. Fiz. Tekh. Poluprovodn. 33, 866–869 (July 1999)  相似文献   
4.
Semiconductors - The spatial and temporal dynamics of the optical loss and carrier density in the heterostructure of a semiconductor laser with a segmented contact are studied using an optical...  相似文献   
5.
The time-of-flight technique in the weak signal mode (i.e., under conditions of small charge drift in the sample) is used to study the transient photocurrent in amorphous (porous) semiconductor-crystalline semiconductor structures. Amorphous Se-As materials, porous Si, and crystalline Si and CdSe were incorporated in the structures. The carrier drift mobilities in the amorphous and porous layers of the structures were determined. The appearance of a cusp on the curves of the transient current is shown to be caused by acceleration of carriers passing through the interface between the amorphous (porous) layer and the crystal. It is established that the carrier acceleration influences the drift mobility and the dispersion parameters. Fiz. Tekh. Poluprovodn. 32, 187–191 (February 1998)  相似文献   
6.
7.
8.
Fefelov  S. A.  Kazakova  L. P.  Bogoslovskiy  N. A.  Bylev  A. B.  Yakubov  A. O. 《Semiconductors》2020,54(4):450-453
Semiconductors - The current–voltage characteristics measured on Ge2Sb2Te5 thin films in the current mode are studied. The effect of multilevel recording is established when applying...  相似文献   
9.
The explosive and physicochemical properties of porous mixtures based on ammonium nitrate, carbamide, and aluminum powder are considered. A melting curve for the ammonium nitrate/carbamide system is plotted using differential scanning calorimetry. The critical detonation diameter is obtained for a charge density of 0.6–0.7 g/cm3. The dependence of the charge density on the degree of filling of the mold with the melt is determined. Detonation velocity is measured for various densities. An explanation of the difference between the experimental and calculated values is proposed.  相似文献   
10.
Semi-synthetic triterpenoids, holding an amino substituted seven-membered A-ring (azepano-ring), which could be synthesized from triterpenic oximes through a Beckmann type rearrangement followed by a reduction of lactame fragment, are considered to be novel promising agents exhibiting anti-microbial, alpha-glucosidase, and butyrylcholinesterase inhibitory activities. In this study, in an attempt to develop new antitumor candidates, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives of betulin, oleanolic, ursolic, and glycyrrhetinic acids were evaluated for their cytotoxic activity against five human cancer cell lines and non-malignant mouse fibroblasts by means of a colorimetric sulforhodamine assay. Azepanoallobetulinic acid amide derivative 11 was the most cytotoxic compound of this series but showed little selectivity between the different human tumor cell lines. Flow cytometry experiments showed compound 11 to act mainly by apoptosis (44.3%) and late apoptosis (21.4%). The compounds were further screened at the National Cancer Institute towards a panel of 60 cancer cell lines. It was found that compounds 3, 4, 7, 8, 9, 11, 15, 16, 19, and 20 showed growth inhibitory (GI50) against the most sensitive cell lines at submicromolar concentrations (0.20–0.94 μM), and their cytotoxic activity (LC50) was also high (1–6 μM). Derivatives 3, 8, 11, 15, and 16 demonstrated a certain selectivity profile at GI50 level from 5.16 to 9.56 towards K-562, CCRF-CEM, HL-60(TB), and RPMI-8226 (Leukemia), HT29 (Colon cancer), and OVCAR-4 (Ovarian cancer) cell lines. Selectivity indexes of azepanoerythrodiol 3 at TGI level ranged from 5.93 (CNS cancer cell lines SF-539, SNB-19 and SNB-75) to 14.89 for HCT-116 (colon cancer) with SI 9.56 at GI50 level for the leukemia cell line K-562. The present study highlighted the importance of A-azepano-ring in the triterpenic core for the development of novel antitumor agents, and a future aim to increase the selectivity profile will thus lie in the area of modifications of azepano-triterpenic acids at their carboxyl group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号