首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192174篇
  免费   29204篇
  国内免费   8904篇
电工技术   10873篇
技术理论   16篇
综合类   13115篇
化学工业   40568篇
金属工艺   9229篇
机械仪表   10504篇
建筑科学   13478篇
矿业工程   4890篇
能源动力   5197篇
轻工业   21380篇
水利工程   3758篇
石油天然气   7679篇
武器工业   1486篇
无线电   24355篇
一般工业技术   27883篇
冶金工业   7205篇
原子能技术   1974篇
自动化技术   26692篇
  2024年   860篇
  2023年   2794篇
  2022年   5209篇
  2021年   7204篇
  2020年   6727篇
  2019年   7123篇
  2018年   7533篇
  2017年   8560篇
  2016年   8449篇
  2015年   10538篇
  2014年   12428篇
  2013年   15081篇
  2012年   14041篇
  2011年   14376篇
  2010年   13303篇
  2009年   12388篇
  2008年   11875篇
  2007年   11050篇
  2006年   10176篇
  2005年   8417篇
  2004年   6390篇
  2003年   5969篇
  2002年   6402篇
  2001年   5528篇
  2000年   4308篇
  1999年   3253篇
  1998年   1996篇
  1997年   1655篇
  1996年   1477篇
  1995年   1151篇
  1994年   947篇
  1993年   647篇
  1992年   569篇
  1991年   431篇
  1990年   324篇
  1989年   261篇
  1988年   203篇
  1987年   122篇
  1986年   115篇
  1985年   64篇
  1984年   50篇
  1983年   45篇
  1982年   49篇
  1981年   34篇
  1980年   50篇
  1979年   26篇
  1977年   11篇
  1976年   10篇
  1959年   14篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Mobile Networks and Applications - Inverse kinematics is an important basic theory in walking control of biped robot. This study focuses on the parameter setting using the improved algorithm in...  相似文献   
2.
了解我国儿童家长的家庭食品安全知识知晓情况及其影响因素,对开展精准食品安全宣教,减少家庭食源性疾病具有积极意义。本研究在7个城市的13 923名3~12岁儿童家长中开展问卷调查,收集基本信息、家庭食品安全知识知晓情况及需求。家长家庭食品安全知识平均得分为18.6分(总分29分),及格率为68.7%。易错知识点包括熟食室温存储时间、食品保质期、易引起中毒的食物以及食品贮存环境等。多因素logistics回归分析显示:家长家庭食品安全知识及格率受地区、文化程度、职业、家长类型、是否关注食品安全、孩子是否讲过食品安全知识以及是否阅读孩子带回来资料的影响。家长最关心的前三位内容为滥用食品添加剂(84.9%)、卫生状况不合格(82.9%)、农药/药物残留(82.7%)。受家长信任的信息来源主要为电视/广播/广告(76.1%)、书籍/报纸/期刊(70.4%)、微博/微信等新媒体(57.7%)。家长的家庭食品安全知识仍存在短板,需利用传统媒体和新媒体结合的方式以及小手牵大手形式开展精准专题宣传,并特别关注文化程度低,从事食品行业的家长以及孩子父亲和保姆。  相似文献   
3.
4.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
5.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
6.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
7.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
8.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
9.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
10.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号