Large scale synthesis of high-efficiency bifunctional electrocatalyst based on cost-effective and earth-abundant transition metal for overall water splitting in the alkaline environment is indispensable for renewable energy conversion. In this regard, meticulous design of active sites and probing their catalytic mechanism on both cathode and anode with different reaction environment at molecular-scale are vitally necessary. Herein, a coordination environment inheriting strategy is presented for designing low-coordination Ni2+ octahedra (L-Ni-8) atomic interface at a high concentration (4.6 at.%). Advanced spectroscopic techniques and theoretical calculations reveal that the self-matching electron delocalization and localization state at L-Ni-8 atomic interface enable an ideal reaction environment at both cathode and anode. To improve the efficiency of using the self-modification reaction environment at L-Ni-8, all of the structural features, including high atom economy, mass transfer, and electron transfer, are integrated together from atomic-scale to macro-scale. At high current density of 500 mA/cm2, the samples synthesized at gram-scale can deliver low hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials of 262 and 348 mV, respectively.
Concrete structures may deteriorate over time due to aggressive service environments, leading to a reduction in their strengths, stiffnesses and reliabilities. In general, the assessment of time-dependent reliability of ageing structures must consider uncertainties in structural deterioration as well as non-stationarities in the structural load processes. This paper develops an approximate method for assessing the impact of structural deterioration and non-stationary live loads on structures, which requires only low-dimensional integration and reduces the cost of assessing time-dependent reliability over a service life extending to 50 years significantly. This approximate method is demonstrated through several examples. The importance of non-stationarities in the resistance and load processes on time-dependent reliability is illustrated and the accuracy of the method is confirmed in several cases utilising Monte Carlo simulation. 相似文献