排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
为了提高镍基二次电池正极材料的电化学性能,采用微乳液快速冷冻沉淀法制备出稀土Ce掺杂纳米级非晶态氢氧化镍粉体材料.采用Raman,XRD,SEM和TEM对其结构形态进行了表征分析,采用交流阻抗谱(EIS)和充放电性能对其电化学性能进行了测试.结果发现,掺入适量的Ce可以进一步增强纳米非晶态氢氧化镍的无序性并且使颗粒细化,进而使其电化学反应的电荷转移电阻降低,电化学活性明显增强.样品作为MH-Ni电池正极材料以0.2 C充放电,终止电压为1.0 V,当掺杂Ce的质量分数为4%时,其放电比容量达到336.7 mAh/g,这明显高于晶态β-氢氧化镍电极材料289 mAh/g的理论容量,说明纳米非晶态氢氧化镍作为高活性电极材料具有很好的应用前景. 相似文献
2.
以NiSO4、ZnSO4和Nd(NO3)3为原料,采用共沉淀快速冷冻法制备出了复合掺杂稀土Nd(III)和Zn(II)的非晶态氢氧化镍粉体材料。测试发现:样品材料微结构无序性强,结晶水含量较高。将样品材料制备成镍电极并组装成MH—Ni电池,在80mA/g恒电流充电5.5h、40mA/g恒电流放电、终止电压为1.0V的充放电制度下,复合掺杂6%Nd(III)和6%Zn(II)样品材料电池的放电平台为1.2624V,放电比容量为343.12mAh/g,远高于目前应用的B-Ni(OH)2电极活性材料的放电比容量。 相似文献
3.
4.
5.
采用微乳液快速冷冻共沉淀法制备镧(Ⅲ)与锌(Ⅱ)复合掺杂非晶态氢氧化镍粉体. 样品材料的结构形态和形貌采用XRD, SEM和Raman光谱进行表征分析, 同时将样品合成电极材料并组装成MH-Ni模拟电池, 研究了样品电极的不同掺杂量对其电化学性能的影响及其相应的作用机制. 实验结果发现, 在80 mA·g-1 恒电流充电5 h, 40 mA·g-1恒电流放电, 终止电压为1.0 V的充放电制度下, 复合掺杂4%La(Ⅲ)6%Zn(Ⅱ)样品的放电平台为1.273 V, 放电容量为346.86 mAh·g-1, 且电极材料在充放电过程中的稳定性和循环可逆性较好. 相似文献
6.
在焊接自动化专业中,焊缝自动跟踪是一项前沿课题。其中,光电式传感器以光电转换元件光电效应为基础,将光通量转换为电量,从而可以检测出其接收到的光强的变化。光电传感器应用光电传感器是一种小型电子设备,在进行焊缝追踪时比较方便精准。本文就光电传感器在全自动焊接机上运用进行了重点分析。 相似文献
7.
L波段探空雷达常见故障分析与维修 总被引:1,自引:1,他引:1
根据阳江当地的气候特点,结合多年使用L波段雷达的实际工作经验,探讨了L波段雷达的日常维护方法,并对常见故障进行了分析和经验总结。L波段探空雷达的维护应重点做好天线装置的防尘、防潮、防渗水和防风,并多注意天气变化可能对天线造成的影响。 相似文献
8.
稀土Y掺杂非晶态纳米Ni(OH)2的结构及其电化学性能研究 总被引:1,自引:1,他引:1
以Tween-80/n-C4H9OH/c-C6H12/NiSO4水溶液体系,采用微乳液快速冷冻沉淀法制备出稀土Y掺杂非晶态纳米级氢氧化镍粉体材料.采用XRD、SAED、SEM、TEM、EDS、Raman、IR,粒度分析和比表面等测试方法对所制备的粉体进行了结构形态表征,并对其充放电性能和交流阻抗谱进行测试.结果发现,适量稀土元素Y的掺入使非晶态纳米氢氧化镍的结构缺陷增多、无序性增强,平均粒度减小、比表面积增大,有利于降低其溶液电阻、电荷转移电阻和Warburg阻抗,从而提高其放电比容量.样品作为MH-Ni电池正极材料以0.2 C充放电,终止电压为1.0 V,当掺杂Y的质量分数为4%时,放电比容量达到333.3 mAh/g. 相似文献
9.
采用快速冷冻沉淀法制备添加PO43-和 Mg2+阴阳离子的非晶态氢氧化镍电极活性粉体材料,对其微结构和电化学性能进行研究。结果表明:添加5%PO43-(质量分数,下同)和2% Mg2+的非晶态样品粉体形貌为无规则,微结构无序性强,含有较多的结晶水,达31%。其作为MH-Ni电池正极活性材料,放电容量为347 mAh·g-1,中值电压达1.29 V,放电倍率对样品电极的放电比容量影响不大;充放电循环50次,容量衰减为3.5%,具有较好的稳定性;质子扩散系数达9.22×10-10 cm2·s-1,并具有较小电化学阻抗。与β-Ni(OH)2材料相比,其电化学性能明显提高。 相似文献
10.