A CEC-funded project has been performed to tackle the problem of producing an advanced Life Monitoring System (LMS) which would calculate the creep and fatigue damage experienced by high temperature pipework components. Four areas were identified where existing Life Monitoring System technology could be improved:
1. 1. the inclusion of creep relaxation
2. 2. the inclusion of external loads on components
3. 3. a more accurate method of calculating thermal stresses due to temperature transients
4. 4. the inclusion of high cycle fatigue terms.
The creep relaxation problem was solved using stress reduction factors in an analytical in-elastic stress calculation. The stress reduction factors were produced for a number of common geometries and materials by means of non-linear finite element analysis. External loads were catered for by producing influence coefficients from in-elastic analysis of the particular piping system and using them to calculate bending moments at critical positions on the pipework from load and displacement measurements made at the convenient points at the pipework. The thermal stress problem was solved by producing a completely new solution based on Green's Function and Fast Fourier transforms. This allowed the thermal stress in a complex component to be calculated from simple non-intrusive thermocouple measurements made on the outside of the component. The high-cycle fatigue problem was dealt with precalculating the fatigue damage associated with standard transients and adding this damage to cumulative total when a transient occurred.
The site testing provided good practical experience and showed up problems which would not otherwise have been detected. 相似文献
It is essential in the simulation of power electronics applications to model magnetic components accurately. In addition to modeling the nonlinear hysteresis behavior, eddy currents and winding losses must be included to provide a realistic model. In practice the losses in magnetic components give rise to significant temperature increases which can lead to major changes in the component behavior. In this paper a model of magnetic components is presented which integrates a nonlinear model of hysteresis, electro-magnetic windings and thermal behavior in a single model for use in circuit simulation of power electronics systems. Measurements and simulations are presented which demonstrate the accuracy of the approach for the electrical, magnetic and thermal domains across a variety of operating conditions, including static thermal conditions and dynamic self heating 相似文献
To detect faults in a time-dependent process, we apply a discrete wavelet transform (DWT) to several independently replicated data sets generated by that process. The DWT can capture irregular data patterns such as sharp "jumps" better than the Fourier transform and standard statistical procedures without adding much computational complexity. Our wavelet coefficient selection method effectively balances model parsimony against data reconstruction error. The few selected wavelet coefficients serve as the "reduced-size" data set to facilitate an efficient decision-making method in situations with potentially large-volume data sets. We develop a general procedure to detect process faults based on differences between the reduced-size data sets obtained from the nominal (in-control) process and from a new instance of the target process that must be tested for an out-of-control condition. The distribution of the test statistic is constructed first using normal distribution theory and then with a new resampling procedure called "reversed jackknifing" that does not require any restrictive distributional assumptions. A Monte Carlo study demonstrates the effectiveness of these procedures. Our methods successfully detect process faults for quadrupole mass spectrometry samples collected from a rapid thermal chemical vapor deposition process 相似文献
This paper presents an ATM-based transport architecture for next-generation multiservices personal communication networks (PCN). Such “multimedia capable” integrated services wireless networks are motivated by an anticipated demand for wireless extensions to future broadband networks. An ATM compatible wireless network concept capable of supporting a mix of broadband ISDN services including constant bit-rate (CBR), variable bit-rate (VBR), and packet data transport is explored from an architectural viewpoint. The proposed system uses a hierarchical ATM switching network for interconnection of PCN microcells, each of which is serviced by high-speed, shared-access radio links based on ATM-compatible cell, relay principles. Design issues related to the physical (modulation), media access control (MAC), and data-link layers of the ATM-based radio link are discussed, and preliminary technical approaches are identified in each case. An example multiservice dynamic reservation (MDR) TDMA media access protocol is then considered in further detail, and simulation results are presented for an example voice/data scenario with a proportion of time-critical (i.e., multimedia) packet data. Time-of-expiry (TOE) based queue service disciplines are also investigated as a mechanism for improving the quality-of-service (QoS) in this scenario 相似文献
The nature of ultrafast energy dissipation in poly(n-hexylsilyne), a prototypical σ-delocalized alkysilicon network polymer, is explored. This disordered silicon backbone material exhibits strong near-UV to visible band-edge absorption and a high quantum yield of visible emission. The time evolution of the emission band is studied over four decades of time using time-resolved luminescence as a probe. The data indicate that while there is an ‘intrinsic’ Stokes shift after photoexcitation due to kinetic energy relaxation (<10ps), thermalization within a dense band of vibronic states via intramolecular phonon-assisted hopping on a nanosecond timescale is the dominant mechanism for excited-state decay. The data can be understood in terms of theoretical predictions for energy relaxation in disordered materials. 相似文献