Large scale synthesis of high-efficiency bifunctional electrocatalyst based on cost-effective and earth-abundant transition metal for overall water splitting in the alkaline environment is indispensable for renewable energy conversion. In this regard, meticulous design of active sites and probing their catalytic mechanism on both cathode and anode with different reaction environment at molecular-scale are vitally necessary. Herein, a coordination environment inheriting strategy is presented for designing low-coordination Ni2+ octahedra (L-Ni-8) atomic interface at a high concentration (4.6 at.%). Advanced spectroscopic techniques and theoretical calculations reveal that the self-matching electron delocalization and localization state at L-Ni-8 atomic interface enable an ideal reaction environment at both cathode and anode. To improve the efficiency of using the self-modification reaction environment at L-Ni-8, all of the structural features, including high atom economy, mass transfer, and electron transfer, are integrated together from atomic-scale to macro-scale. At high current density of 500 mA/cm2, the samples synthesized at gram-scale can deliver low hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials of 262 and 348 mV, respectively.
To design a clinically translatable nanomedicine for photodynamic theranostics, the ingredients should be carefully considered. A high content of nanocarriers may cause extra toxicity in metabolism, and multiple theranostic agents would complicate the preparation process. These issues would be of less concern if the nanocarrier itself has most of the theranostic functions. In this work, a poly(ethylene glycol)‐boron dipyrromethene amphiphile (PEG‐F54‐BODIPY) with 54 fluorine‐19 (19F) is synthesized and employed to emulsify perfluorohexane (PFH) into a theranostic nanoemulsion (PFH@PEG‐F54‐BODIPY). The as‐prepared PFH@PEG‐F54‐BODIPY can perform architecture‐dependent fluorescence/photoacoustic/19F magnetic resonance multimodal imaging, providing more information about the in vivo structure evolution of nanomedicine. Importantly, this nanoemulsion significantly enhances the therapeutic effect of BODIPY through both the high oxygen dissolving capability and less self‐quenching of BODIPY molecules. More interestingly, PFH@PEG‐F54‐BODIPY shows high level of tumor accumulation and long tumor retention time, allowing a repeated light irradiation after a single‐dose intravenous injection. The “all‐in‐one” photodynamic theranostic nanoemulsion has simple composition, remarkable theranostic efficacy, and novel treatment pattern, and thus presents an intriguing avenue to developing clinically translatable theranostic agents. 相似文献
ABSTRACT Here, a novel cryogenic rolling plus intercritical annealing process was applied to a transformation-induced plasticity (TRIP) steel with a low chemical composition of carbon and manganese. Compared with traditional cold rolling, obvious grain refinement was observed, due to a high amount of dislocations retained. In addition, austenite volume fraction was increased, because of a unique nucleation mechanism. Subjected to cryogenic rolling, strength and ductility were increased, due to the enhanced austenite stability, which provided continuous and active TRIP effect. Consequently, tensile strength was increased to 1030?MPa, and elongation was increased to 38.2%. Thus, a great mechanical combination was obtained in a steel with a relatively low chemical composition with carbon and manganese, only by cryogenic rolling process. 相似文献
Highly efficient adsorbents, which can effectively remove both metal ions and dyes from wastewater with robust stability, are strongly required for the remediation of current polluted aqueous system, but still a challenge to be realized. Herein, a new adsorbent has been designed to solve this problem by anchoring diethylene triamine pentaacetic acid (DTPA) grafted polyethyleneimine (PEI) onto carboxylated GO (GOC-g-PD). Given the amino and carboxyl active groups from PEI and GOC/DTPA, our GOC-g-PD displays good adsorption capacity against not only inorganic metal ions (Cu2+ and Pb2+) but also organic dye (methylene blue: MB). The maximum adsorption capacity of GOC-g-PD for Cu2+, Pb2+ and MB reached 309.60 mg·g?1, 316.17 mg·g?1 and 262.10 mg·g?1, respectively. Furthermore, our GOC-g-PD also exhibits good cycling stability and chemical stability against wide pH values. These outstanding properties revealed our GOC-g-PD held great potential in purifying the sewage discharged from industries.