首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   2篇
自动化技术   3篇
  2011年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
针对视频序列维数高、帧间相关性大、运动轨迹复杂的特点,本文将LLE非线性降维算法用于视频处理,并重点研究了如何利用该算法对目标跟踪过程中的模板进行预测更新。由于单步预测方法在运动目标发生部分或全部遮挡时无法保证跟踪的准确性,因此,本文进一步将时间序列模型与BP网络相结合实现跟踪目标的多步预测,从而可以弥补时间序列模型在单步预测方面的不足。实验证明,本文算法能保证在运动目标跟踪过程中的准确性和鲁棒性。  相似文献   
2.
通过将动态贝叶斯网络模型应用到人体目标跟踪中,提出了一种多特征融合跟踪算法。该方法基于动态贝叶斯网络建立状态模型,分别针对形变、遮挡、有干扰三种情况提取运动中人体的颜色和梯度特征,利用粒子滤波方法对颜色特征和梯度特征进行融合。实验表明,提出的多特征跟踪算法能较好地解决复杂环境下的目标跟踪问题,相比传统的利用单一目标特征的跟踪算法具有更好的鲁棒性和准确性。  相似文献   
3.
针对视频序列维数高、帧间相关性大、运动轨迹复杂的特点,将LLE非线性降维算法用于视频处理,并重点研究了如何利用该算法对目标跟踪过程中的模板进行预测更新.由于单步预测方法在运动目标发生部分或全部遮挡时无法保证跟踪的准确性,进一步将时间序列模型与BP网络相结合实现跟踪目标的多步预测,从而可以弥补时间序列模型在单步预测方面的不足.实验证明,该算法能保证在运动目标跟踪过程中的准确性和鲁棒性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号