排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
针对在大数据的处理过程中,对大数据任务的划分和资源分配缺乏合理性的问题,提出一种面向大数据任务的调度方法。该方法首先引入了调度理论用于处理大数据任务,帮助建立合理的大数据任务管理体系并规范大数据任务处理流程;然后,基于大数据任务的本质对数据集进行分析处理,引入决策表进行属性约简,以减小大数据分析任务的数据量和提高大数据分析效率;最后,采用模糊综合评价方法,将模糊综合评价的结果作为对任务调度的依据,以提高任务资源分配合理性。在UCI(University of California Irvine)数据集上进行测试,实验结果表明,该调度算法在平均预测准确度上比朴素贝叶斯(NB)算法高7.42个百分点,比误差反向传播(BP)算法高5.16个百分点,比均方根传递(RMSProp)算法高3.74个百分点。而对于特征数较多的数据集,所提算法在预测精度上较其他算法有显著提高。所提算法在平均调度长度比(SLR)上较HCPFS(Heterogeneous Critcal Path First Synthesis)算法和HIPLTS(Heterogeneous Improved Priority List for Task Scheduling)算法分别下降了12.14%和4.56%,在平均加速比上分别提升了7.14%和42.56%,表明该算法能有效提高大数据系统中任务调度的效率。综合比较分析,所提方法具有较高的预测精度,且高效可靠。 相似文献
2.
针对在大数据的处理过程中,对大数据任务的划分和资源分配缺乏合理性的问题,提出一种面向大数据任务的调度方法。该方法首先引入了调度理论用于处理大数据任务,帮助建立合理的大数据任务管理体系并规范大数据任务处理流程;然后,基于大数据任务的本质对数据集进行分析处理,引入决策表进行属性约简,以减小大数据分析任务的数据量和提高大数据分析效率;最后,采用模糊综合评价方法,将模糊综合评价的结果作为对任务调度的依据,以提高任务资源分配合理性。在UCI(University of California Irvine)数据集上进行测试,实验结果表明,该调度算法在平均预测准确度上比朴素贝叶斯(NB)算法高7.42个百分点,比误差反向传播(BP)算法高5.16个百分点,比均方根传递(RMSProp)算法高3.74个百分点。而对于特征数较多的数据集,所提算法在预测精度上较其他算法有显著提高。所提算法在平均调度长度比(SLR)上较HCPFS(Heterogeneous Critcal Path First Synthesis)算法和HIPLTS(Heterogeneous Improved Priority List for Task Scheduling)算法分别下降了12.14%和4.56%,在平均加速比上分别提升了7.14%和42.56%,表明该算法能有效提高大数据系统中任务调度的效率。综合比较分析,所提方法具有较高的预测精度,且高效可靠。 相似文献
1