首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
自动化技术   2篇
  2023年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
为满足对新兴安卓恶意应用家族的快速检测需求,提出一种融合MAML(model-agnostic meta-learning)和CBAM(convolutional block attention module)的安卓恶意应用家族分类模型MAML-CAS。将安卓恶意应用样本集中的DEX文件可视化为灰度图,并构建任务集;融合混合域注意力机制CBAM,设计两个具有同等结构的卷积神经网络,分别作为基学习器和元学习器,这两个学习器在自动提取任务集中样本特征的同时,可从通道和空间两个维度来增强关键特征表达;利用元学习方法 MAML对两个学习器进行训练,其中基学习器完成特定恶意家族分类任务的属性学习,元学习器则学习不同任务的共性;在两个学习器训练完成后,MAML-CAS将获得初始化参数,在面对新的安卓恶意应用家族分类任务时,不需要重新训练,只需要少量样本就可以快速迭代;利用训练完成的基学习器提取安卓恶意应用家族特征,并利用SVM进行恶意家族分类。实验结果表明,MAML-CAS模型对新兴小样本安卓恶意应用家族具有良好的检测效果,检测速度较快,并具有较好的稳定性。  相似文献   
2.
为解决代码混淆算法有效性评估模型存在评价指标不全面、单一学习器泛化能力低的问题,提出一种融合自适应增强训练机制和Stacking算法的代码混淆算法有效性评估模型SDF-Stacking。构建一个包括强度、弹性、开销、隐蔽性4大特征的代码混淆有效性评价指标集合;在模型的基分类器训练阶段引入自适应增强训练机制,提高基分类器的预测精度和多样性;使用最大互信息算法做数据融合,增大元分类器训练数据信息量。实验结果表明,该模型在多个评价指标上均优于其它对比模型,准确率可达98.6%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号