排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
2.
大规模多输入多输出(MIMO)系统中,随着天线数目的增加,传统的信号检测算法的检测性能大幅度下降,复杂度呈指数增长,且不适用于高阶调制。针对大规模MIMO场景,基于阴影域思想提出一种结合二次规划(QP)与分支界限(BB)算法的搜索树检测算法。首先,构造QP模型,并针对一阶QP算法后的解向量,提取落入阴影域的不可靠符号;然后,将落入阴影域的不可靠符号进行BB搜索树检测以求得最优解;同时,为了降低复杂度,提出三种搜索树修剪策略,在性能和复杂度之间折中选择。仿真结果表明,在大规模MIMO场景下,在调制阶数为6的正交幅度调制(QAM)时,提出的基于阴影域搜索树检测算法比QP算法提升了约20 dB的性能增益,在256QAM调制时,比QP算法提升了约21 dB的性能增益,验证了算法对高阶调制的适应性,同时,与传统的搜索树算法相比,使用相同修剪策略,复杂度降低了50%左右。 相似文献
1