排序方式: 共有2条查询结果,搜索用时 28 毫秒
1
1.
应用MEMS陀螺仪测量人体手臂运动姿态时,针对陀螺仪受线加速度干扰导致测量姿态发散的问题,提出基于Kalman滤波算法的姿态误差补偿方法;该方法首先将陀螺仪采集到的角速度通过方向余弦算法解算得到姿态角,并将陀螺仪动态漂移造成的姿态角误差视为时变信号,通过建立姿态角漂移误差的状态方程及观测方程,应用卡尔曼滤波算法,实现对姿态角漂移误差的估计,最终达到对陀螺仪动态漂移误差的补偿;实验与仿真结果表明,应用该算法能够有效的抑制线加速度干扰导致的陀螺仪测量的姿态发散,适用于陀螺仪对人体手臂运动姿态的测量。 相似文献
2.
针对载体线性加速度以及周围局部磁干扰对姿态测量精度的影响,基于已有的惯性测量单元,设计了一个基于四元数的实时估计手臂姿态的扩展卡尔曼滤波器(EKF)。提出利用四元数引入加速计和磁强计的预估测量值构造自适应测量噪声协方差阵的方法,结合QUEST算法,来判定姿态角解算对陀螺仪、加速计和磁强计输出信息的依赖程度,以此来提高测量精度。文末通过实验仿真对该方法进行了验证,并对实验结果和电磁跟踪系统采集到的数据进行了比较,结果表明,本文提出的方法能显著提高手臂姿态测量精度,可有效满足应用要求。 相似文献
1