排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
信任网络能模拟现实社会,因此其用户间的信任数据可用于推荐算法,但同时也面临数据稀疏的问题,推荐效果较差。针对该问题,提出融合标签传播和信任扩散的个性化推荐方法。设计基于标签传播的大社区发现算法,得到独属于每个用户的大社区。根据各用户所属大社区内用户间的信任网络,给出信任预处理算法,预测用户新的信任关系,从而扩展用户的信任网络,并利用混合信任扩散算法,使用户及其所在大社区内其他用户之间的信任度更趋差异化。使用Epinions.com上的数据集进行实验,结果表明,与普通信任网络推荐方法相比,该方法的推荐准确度有明显提高。 相似文献
2.
传统的协同过滤推荐算法受限于数据稀疏性问题,导致推荐结果较差.用户的社交关系信息能够体现用户之间的相互影响,将其用于推荐算法能够提高推荐结果的准确度,目前的社交化推荐算法大多只考虑了用户的直接社交关系,没有利用到潜在的用户兴趣偏好信息以及群体聚类信息.针对上述情况,提出一种融合社区结构和兴趣聚类的协同过滤推荐算法.首先通过重叠社区发现算法挖掘用户社交网络中存在的社区结构,同时利用项目所属类别信息,设计模糊聚类算法挖掘用户兴趣偏好层面的聚类信息.然后将2种聚类信息融合到矩阵分解模型的优化分解过程中.在Yelp数据集上进行了新算法与其他算法的对比实验,结果表明,该算法能够有效提高推荐结果的准确度. 相似文献
3.
现实世界中的网络结构呈现出重叠社区的特征。在研究经典的标签算法的基础上,该文提出基于贡献函数的重叠社区发现算法。算法将每个节点用三元组(阈值、标签、从属系数)集合来表示。节点的阈值是每次迭代过程中标签淘汰的依据,该值由多元线性方程自动计算而来。从属系数用于衡量当前节点与标签所标识社区的相关度,从属系数的值越大说明该节点与标签所标识社区的关联性越强。在每一次迭代的过程中,算法依据贡献函数计算每个节点的从属系数,并生成新的三元组集合。然后依据标签决策规则淘汰标签,进行从属系数规范化。通过对真实的复杂网络和LFR(Lancichinetti Fortunato Radicchi)自动生成的网络进行测试可知,该算法的社区划分准确率高,而且划分结果稳定。 相似文献
1