排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
双线性模型预测控制的研究表明,采用一般双线性模型的预测控制将涉及非线性优化问题,在线处理相当困难,而采用线性近似模型的预测控制又会带来较大的偏差.针对一类输入一输出双线性系统,提出了一种双线性系统的广义预测控制算法.该算法将基于输入-输出模型双线性系统中的双线性项和线性项合并,建立了一种类似于线性系统的ARIMA模型,并充分利用多步最优预测信息,由递推近似实现多步预测.控制律具有解析形式,避免了一般非线性寻优的复杂计算,并能适用于非最小相位双线性系统.仿真实验表明该算法具有良好的控制效果. 相似文献
2.
针对仅通过表面肌电信号(s EMG)进行手势识别难以应对复杂手势的问题,提出一种基于表面肌电和位姿信息融合的手势识别方法。通过双阈值方法对信号活动段进行分割,提取表面肌电信号、位姿信号的特征,使用核主成分分析方法(KPCA)对提取特征进行降维融合,使提取特征中的非线性信息得到较好保留,最后通过随机森林(RF)分类器进行分类识别。实验结果显示,该方法对10名受试者的11种不同手势的最佳平均识别率为98.23%,单个动作的识别准确率均在90%以上,验证了提出方法的可靠性。 相似文献
3.
为了满足手部运动功能康复器的主动康复训练对多种人手动作模式识别的需求,分析了表面肌电信号采样通道设置布局、训练样本制作、特征提取方式、模式分类器结构参数等因素对手部动作识别的影响,设计了针对前臂的表面肌电信号采集方案,分别基于时域统计量、自回归模型系数、小波包分解系数特征设计了BP神经网络分类器。实验结果表明:对6种单指动作、13种多指动作、20种手部动作的最佳平均识别率分别为98.5%、92.4%、90.9%,计算时间小于190 ms,验证了所提出方法的有效性和实用性。 相似文献
4.
5.
基于改进支持向量机的人手动作模式识别方法 总被引:1,自引:0,他引:1
为了提高基于表面肌电信号(sEMG)控制的手部运动康复器对人手多种动作模式的识别率,比较常规支持向量机(SVM)多类分类器的特点,提出改进的决策树支持向量机多类分类方法.该方法引入基于sEMG特征向量的类间距离可分性测度来指导决策树的构建,能够为每个SVM子分类器的训练提供识别率较高的样本划分方案,在提高决策树内部节点分类成功率的同时,简化了分类器结构.通过实验对比可知,新方法在20种手部动作模式的识别训练过程中,单项动作最低识别率较常规决策树方式提高了7.1%,平均识别率达到88.9%,训练速度较一对一支持向量机分类器提高了5.8%. 相似文献
6.
本文提出了一种新型气动蠕动机器人,分析了它的驱动机理和动态特性,这种蠕动机器人有一个基于气动驱动器的新颖驱动机构和四个吸附足,它结构简单,制造成本低,易于小型化,仿真表明本文的控制策略可行,响应快速,控制可靠,因而这种新型机器人在很多领域有着广泛的应用潜力。 相似文献
7.
8.
9.
10.
为了满足主动康复训练和人机交互等复杂应用场景对多样性的人手运动模式识别需求,提出了一种基于多通道表面肌电信号sEMG小波包分解特征的人手动作模式识别方法。通过实验对比分析,确定了最佳采样布局方案,通过采集前臂表面肌电信号,设计了基于数字滤波器的肌电信号活动段自动标识算法,能快速准确完成样本动作标签的制作。以原始肌电信号的小波包分解系数作为特征向量训练分类器。通过对比不同隐含层节点数对分类器模式识别准确率的影响,最终确定BP神经网络模式分类器的所有结构参数。设计并训练完成了BP神经网络人手运动模式分类器。对9种手部运动的平均识别率达到93.6%,计算时间小于150ms。 相似文献