全文获取类型
收费全文 | 100篇 |
免费 | 5篇 |
国内免费 | 1篇 |
专业分类
电工技术 | 1篇 |
化学工业 | 29篇 |
金属工艺 | 2篇 |
机械仪表 | 3篇 |
能源动力 | 6篇 |
水利工程 | 1篇 |
无线电 | 14篇 |
一般工业技术 | 19篇 |
冶金工业 | 2篇 |
自动化技术 | 29篇 |
出版年
2023年 | 5篇 |
2022年 | 6篇 |
2021年 | 9篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 2篇 |
2016年 | 7篇 |
2015年 | 1篇 |
2014年 | 8篇 |
2013年 | 5篇 |
2012年 | 3篇 |
2011年 | 5篇 |
2010年 | 4篇 |
2009年 | 8篇 |
2008年 | 5篇 |
2007年 | 4篇 |
2006年 | 5篇 |
2005年 | 6篇 |
2004年 | 1篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1988年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 0 毫秒
1.
Pramod Kumar Tiwari Mukesh Kumar Ramavathu Sakru Naik Gopi Krishna Saramekala 《半导体学报》2016,37(6):064003-4
This work presents a comparative study of the influence of various parameters on the analog and RF properties of silicon-nanotube MOSFETs and nanowire-based gate-all-around (GAA) MOSFETs. The important analog and RF performance parameters of SiNT FETs and GAA MOSFETs, namely drain current (Id), transconductance to drain current ratio (gm/Id), Ion/Ioff, the cut-off frequency (fT) and the maximum frequency of oscillation (fMAX) are evaluated with the help of Y- and H-parameters which are obtained from a 3-D device simulator, ATLASTM. It is found that the silicon-nanotube MOSFETs have far more superior analog and RF characteristics (gm/Id, fT and fMAX) compared to the nanowire-based gate-all-around GAA MOSFETs. The silicon-nanotube MOSFET shows an improvement of~2.5 and 3 times in the case of fT and fMAX values respectively compared with the nanowire-based gate-all-around (GAA) MOSFET. 相似文献
2.
3.
Parametric sensitivity study of operating and design variables in wellbore heat exchangers 总被引:1,自引:0,他引:1
A numerical study was conducted to evaluate the potential for using Wellbore Heat Exchangers (WBHX) to extract heat for use in electricity generation. Variables studied included operational parameters such as wellbore geometries, working fluid properties, circulation rates, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. The effects of tubing properties and casing lengths are of second-order.On the basis of a sensitivity study, a Best Case model was simulated, and results compared against the geothermal fluid requirements of existing power generation plants that use low-temperature geothermal fluids. Even assuming ideal work conversion to electricity, a WBHX cannot supply sufficient energy to generate 200 kWe at the onset of pseudo-steady-state (PSS) conditions. Using realistic conversion efficiencies it is unlikely that the system would be able to generate 50 kWe at the onset of PSS. 相似文献
4.
Moparthi Sandeep Lavudi Ramesh Suddapalli Subba Rao Saramekala Gopi Krishna 《SILICON》2022,14(3):1309-1314
Silicon - In this paper, for the first time, the performance evaluation of negative capacitance single-active layer double-gate (NC-SALDG) TFT is presented. In the proposed NC-SALDG TFT, amorphous... 相似文献
5.
This article reports the application of ozone for the selective oxidation of cyclohexane over 13X molecular sieve supported various metal oxides at ambient temperatures. From the SEM, XRD and HR-TEM results, the impregnated metal oxides are highly dispersed on the support. The activity results reveal that Co/MS, Mo/MS, Cu/MS, and Ag/MS catalysts produce cyclohexanone/cyclohexanol as selective oxidation products, whereas Ce/MS, Mn/MS, and V/MS catalysts yield, predominantly, CO and CO2. Among them, Co/MS catalyst exhibits better conversion of 12.2% with selectively of 58% to cyclohexanone/cyclohexanol, which is attributed to the simultaneous activation of ozone and cyclohexane (-C-H bond) at ambient conditions. 相似文献
6.
Methacrylate based copolymers are considered as one of the best organic coating materials for anticorrosive application. Poly(N-vinyl carbazole-co-glycidyl methacrylate) have been synthesized by free radical solution polymerization technique from different mole ratios of N-vinyl carbazole (N-Vc) and glycidyl methacrylate (GMA) and characterized using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). Thermal analyses of the poly(N-Vc-co-GMA) were performed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The number average molecular weight (Mn) of different compositions of the same was determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens coated with different composition of copolymers were investigated in 1 M H2SO4 using potentiodynamic polarization, electrochemical impedance spectroscopic (EIS) method, scanning electron microscopic (SEM) and energy dispersive X-ray analysis (EDAX). Poly(N-Vc-co-GMA) have been provided in order to achieve adherent, low permeability to aggressive ions as well as environmentally favored good anticorrosive coating. Electrochemical corrosion test and surface analysis results clearly showed that poly(N-Vc-co-GMA) coatings served as a stable host matrix on low nickel stainless steel against corrosion. It was also observed that the coatings of poly(N-Vc-co-GMA) with equal mole ratio of N-Vc and GMA exhibited the best corrosion resistance among all combinations. 相似文献
7.
D. Gopi J. Indira L. Kavitha J. M. F. Ferreira 《Journal of Applied Electrochemistry》2013,43(3):331-345
Surgical grade stainless steel (316L SS) is a widely used implant material in orthopedic surgeries. However, the release of metallic ions evidenced from the 316L SS implants in vivo conditions is a big challenge. In order to minimize the release of metallic ions, coating the 316L SS implant with a biocompatible material like hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is one of the suitable methods. In this paper, the hydroxyapatite coating on borate passivated through poly-ortho-phenylenediamine (PoPD)-coated 316L SS by a dip coating method has been reported. The coatings were characterized by electrochemical techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy, and cyclic voltammetry. Surface characterization studies of the coatings such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were also carried out. The leach out characteristics of the coatings was determined at the impressed potential. The mechanical property of the coatings was evaluated by Vicker’s microhardness test. The Cr-rich passive film formed underneath the PoPD layer showed a higher protective efficiency. The ability to form apatite on the post-passivated PoPD-coated 316L SS specimen was examined by immersing it in the simulated body fluid. The enhanced corrosion resistivity of the HAP coating on the post-passivated PoPD-coated 316L SS was due to an effective barrier of PoPD followed by the passive film underneath the PoPD. 相似文献
8.
Poly((N-methacryloyloxymethyl)benzotriazole-co-N-vinylpyrrolidone) was synthesized by free radical solution polymerization technique and characterized using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Thermal stability of the synthesized copolymer was analyzed by thermogravimetric analysis and differential thermal analysis. The corrosion performances of low nickel stainless steel specimens coated with different mole ratios of synthesized copolymer were investigated in 1 M H2SO4 using potentiodynamic polarization, electrochemical impedance method, and chronoamperometric studies. Surface and morphological investigation were also provided in order to characterize the adherence and uniformity of the coatings. Electrochemical corrosion test and surface analysis results were clearly showed that the copolymer-coatings served as a stable host matrix on low nickel stainless steel as environmentally favored good anticorrosive coating. 相似文献
9.
Sreeraj Gopi Augustine Amalraj Karthik Varma Shintu Jude Prakash B. Reddy Chandradhara Divya 《国际聚合物材料杂志》2018,67(9):581-588
A phytogenic feed additive (PFA) formulation was prepared with bioactive molecules—curcuminoids, gingerol, and carvacrol by encapsulating in nanofiber isolated from turmeric spent (turmeric nanofiber, TNF). This formulation was completely characterized by scanning electron microscope, ultra performance liquid chromatography, and gas chromatography and evaluated for its efficacy. PFA-encapsulated TNF (PFA@TNF) considerably increased mean body weight, decreased cholesterol level, mortality rate, and reduced Escherichia coli content of broilers than antibiotic growth promoter (AGP). The depth of crypts in the ileum of broilers was considerably reduced by the inclusion of PFA@TNF in diets compared with the AGP. 相似文献
10.
Rajangam Vinodh Prem Jyoti Sing Rana Chandu VV Muralee Gopi Zongmin Yang Raji Atchudan Kandan Venkatachalam Hee‐Je Kim 《Polymer International》2019,68(5):929-935
We successfully synthesized 13X zeolite using a hydrothermal method. Then, composites of polyaniline (PANI) with 13X zeolite and PANI–13X with platinum were prepared by chemical oxidative polymerization and chemical reduction, respectively. Field emission scanning electron microscopy, X‐ray diffraction, Raman spectroscopy and Brunauer–Emmett–Teller techniques were used to characterize the PANI–Pt and PANI–Pt–13X composites. Further, the electrocatalytic activity towards methanol oxidation of the synthesized catalysts was explored using cyclic voltammetry in 1 mol L?1 CH3OH + 0.5 mol L?1 H2SO4 solution. From the obtained results, PANI–Pt–13X shows superior performance compared to PANI–Pt towards methanol oxidation and electrical conductivity. Hence, the 13X zeolite‐incorporated PANI–Pt composite could be an efficient catalyst for direct methanol fuel cell applications. © 2019 Society of Chemical Industry 相似文献