排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Fatih Alim Kursat Bekar Kostadin Ivanov Kenan Unlu Jack Brenizer Yousry Azmy 《Annals of Nuclear Energy》2006,33(17-18):1391-1395
Due to inherited design issues with the current arrangement of beam ports (BPs) and reactor core-moderator assembly in The Perm State Breazeale Reactor (PSBR), the development of innovative experimental facilities utilizing neutron beams is extremely limited. Therefore, a study has started to examine the existing BPs for neutron and gamma outputs and develop a new core-moderator location and BP geometry in PSBR. Although 7 BPs are placed in PSBR, 2 of them are using currently. In this study BP 4, one of the currently being used BP, is examined. With changing the location of the BP 4 and structure of the core assembly, some artificial models are developed and compared with the original model. 相似文献
2.
Kostadin Koroutchev Author Vitae Elka Korutcheva Author Vitae 《Pattern recognition》2009,42(8):1684-1692
The purpose of this paper is to introduce an algorithm that can detect the most unusual part of a digital image in probabilistic setting. The most unusual part of a given shape is defined as a part of the image that has the maximal distance to all non-intersecting shapes with the same form. The method is tested on two- and three-dimensional images and has shown very good results without any predefined model. A version of the method independent of the contrast of the image is considered and is found to be useful for finding the most unusual part (and the most similar part) of the image conditioned on given image.The results can be used to scan large image databases, as for example medical databases. 相似文献
3.
The Haling Power Distribution (HPD) has been applied in a unique process to greatly accelerate the in-core fuel management optimization calculations. These calculations involve; the arrangement of fuel assemblies (FAs) and the placement of Burnable Poisons (BPs) in the fresh FAs. The HPD deals only with the arrangement of FAs. The purpose of this paper is to describe past uses of the HPD, provide an example selected from many similar calculations to explain why and how it can be used, and also to show its effectiveness as a filter in the GARCO GA code. The GARCO (Genetic Algorithm Reactor Core Optimization) is an innovative GA code that was developed by modifying the classical representation of the genotype and GA operators. A reactor physics code evaluates the LPs in the population using the HPD Method, which rapidly depletes the core in a single depletion step with a constant power distribution. The HPD is used basically in GARCO as a filter to eliminate invalid LPs created by the genetic operators, to choose a reference LP for BP optimization, and to create an initial population for simultaneous optimization of the LP and BP placement into the core. The accurate depletion calculation of the LP with BPs is done with the coupled lattice and reactor physics CASMO-4/SIMULATE3 package. However, the fact that these codes validate safety of the core with the added BP placement design also validates the use of the HPD method. The calculations are applied to the TMI-1 core as an example PWR providing concrete results. 相似文献
4.
A practical fuel management system for the he Pennsylvania State University Breazeale Research Reactor (PSBR) based on the advanced Monte Carlo methodology was developed from the existing fuel management tool in this research. Several modeling improvements were implemented to the old system. The improved fuel management system can now utilize the burnup dependent cross section libraries generated specifically for PSBR fuel and it is also able to update the cross sections of these libraries by the Monte Carlo calculation automatically. Considerations were given to balance the computation time and the accuracy of the cross section update. Thus, certain types of a limited number of isotopes, which are considered “important”, are calculated and updated by the scheme. Moreover, the depletion algorithm of the existing fuel management tool was replaced from the predictor only to the predictor-corrector depletion scheme to account for burnup spectrum changes during the burnup step more accurately. An intermediate verification of the fuel management system was performed to assess the correctness of the newly implemented schemes against HELIOS. It was found that the agreement of both codes is good when the same energy released per fission (Q values) is used. Furthermore, to be able to model the reactor at various temperatures, the fuel management tool is able to utilize automatically the continuous cross sections generated at different temperatures. Other additional useful capabilities were also added to the fuel management tool to make it easy to use and be practical. As part of the development, a hybrid nodal diffusion/Monte Carlo calculation was devised to speed up the Monte Carlo calculation by providing more converged initial source distribution for the Monte Carlo calculation from the nodal diffusion calculation. Finally, the fuel management system was validated against the measured data using several actual PSBR core loadings. The agreement of the predicted core excess reactivities and the measured values is found to be good considering the measurement uncertainties. 相似文献
5.
Detailed representations of the reactor core generate computational meshes with a high number of cells where the fluid dynamics equations must be solved. An exhaustive analysis of the CPU times needed by the thermal-hydraulic subchannel code COBRA-TF for different stages in the solution process has revealed that the solution of the linear system of pressure equations is the most time consuming process. To improve code efficiency two optimized matrix solvers, Super LU library and Krylov non-stationary iterative methods have been implemented in the code and their performance has been tested using a suite of five test cases. The results of performed comparative analyses have demonstrated that for large cases, the implementation of the Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) Krylov method combined with the incomplete LU factorization with dual truncation strategy (ILUT) pre-conditioner reduced the time used by the code for the solution of the pressure matrix by a factor of 20. Both new solvers converge smoothly regardless of the nature of simulated cases and the mesh structures and improve the stability and accuracy of results compared to the classic Gauss–Seidel iterative method. The obtained results indicate that the direct inversion method is the best option for small cases. 相似文献
6.
球床式高温气冷堆采用了球形燃料元件,燃料区域由石墨基体和弥散在其中的包覆燃料颗粒构成,其外有与石墨基体相同材料的包壳;燃料球堆叠成填充率约为0.61的球床式堆芯活性区。在堆芯物理计算中,必须考虑其特殊的双重非均匀性结构对共振计算的影响。此外,由于石墨起到了中子慢化和结构材料的重要作用,其截面参数的准确性对共振计算和临界计算均有很大影响。本文采用蒙特卡罗中子输运计算程序SCALE/KENO-Ⅵ和Serpent-2,对比分析了ENDF/B Ⅶ.0和ENDF/B Ⅶ.1版本核数据库对不同燃料模型的有效增殖因数(keff)及反应率的影响,并进一步比较了不同双重非均匀性处理方法对计算结果的影响。结果表明,由于石墨吸收率增大,使用ENDF/B Ⅶ.1版本核数据库所得keff小于使用ENDF/B Ⅶ.0版本核数据库的结果,且计算模型中石墨材料越多,计算结果相差越大:对于包覆颗粒模型差别约为200pcm,对于燃料元件约为700pcm,对于堆芯单元约为1 600pcm。SCALE/KENO-Ⅵ程序使用DOUBLEHET模型进行多群蒙特卡罗计算所得结果与连续能量模型计算结果吻合良好,且计算效率高,对燃料球模型而言可节省约85%的计算时间。 相似文献
7.
8.
9.
Georgi K. Gadzhev Kostadin G. Ganev Nikolay G. Miloshev Dimiter E. Syrakov Maria Prodanova 《Computers & Mathematics with Applications》2013,65(3):402-422
The present work aims at studying the local to regional atmospheric pollution transport and transformation processes over Bulgaria and at tracking and characterizing the main pathways and processes that lead to atmospheric composition formation in the region.The US EPA Models-3 system is chosen as a modeling tool. As the NCEP Global Analysis Data with 1 degree resolution is used as meteorological background, the MM5 and CMAQ nesting capabilities are applied for downscaling the simulations to a 9 km resolution over Balkans and 3 km over Bulgaria. The TNO emission inventory is used as emission input. Special pre-processing procedures are created for introducing temporal profiles and speciation of the emissions.The study is based on a large number of numerical simulations carried out day by day for the years 2000–2007 and four emission scenarios—with all the emissions and with biogenic emissions, emissions from energetics and road transport excluded. Results from the numerical simulations concerning the main features of the atmospheric composition in Bulgaria and the contribution of the different emission categories are demonstrated in the paper. Some results from the CMAQ “Integrated Process Rate Analysis” are also given. 相似文献
10.