首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1455篇
  免费   72篇
  国内免费   1篇
电工技术   5篇
化学工业   500篇
金属工艺   17篇
机械仪表   15篇
建筑科学   52篇
矿业工程   1篇
能源动力   26篇
轻工业   297篇
水利工程   13篇
无线电   46篇
一般工业技术   208篇
冶金工业   160篇
原子能技术   6篇
自动化技术   182篇
  2023年   18篇
  2022年   106篇
  2021年   95篇
  2020年   45篇
  2019年   35篇
  2018年   48篇
  2017年   41篇
  2016年   63篇
  2015年   30篇
  2014年   75篇
  2013年   102篇
  2012年   85篇
  2011年   118篇
  2010年   100篇
  2009年   73篇
  2008年   79篇
  2007年   60篇
  2006年   41篇
  2005年   44篇
  2004年   24篇
  2003年   31篇
  2002年   21篇
  2001年   11篇
  2000年   17篇
  1999年   23篇
  1998年   11篇
  1997年   20篇
  1996年   7篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1982年   2篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有1528条查询结果,搜索用时 15 毫秒
1.
Differential scanning calorimetry and hot stage microscopy have been used to study the interactions between sulphamethoxazole and the sugars maltose, glucose, sucrose and mannitol. Only the sulphamethoxazole-mannitol system appeared to be stable and presented a eutectic containing 90.3% sulphamethoxazole. Heats of fusion for sulphamethoxazole, mannitol and their eutectic were 33.4, 73.6 and 39.9 cal g respectively.  相似文献   
2.
Given a graph G where a label is associated with each edge, we address the problem of looking for a maximum matching of G using the minimum number of different labels, namely the labeled maximum matching problem. It is a relatively new problem whose application is related to the timetabling problem. We prove it is NP-complete and present four different mathematical formulations. Moreover, we propose an exact algorithm based on a branch-and-bound approach to solve it. We evaluate the performance of our algorithm on a wide set of instances and compare our computational times with the ones required by CPLEX to solve the proposed mathematical formulations. Test results show the effectiveness of our procedure, that hugely outperforms the solver.  相似文献   
3.
Variable domains of camelid antibodies (so-called nanobodies or VHH) are the smallest antibody fragments that retain complete functionality and therapeutic potential. Understanding of the nanobody-binding interface has become a pre-requisite for rational antibody design and engineering. The nanobody-binding interface consists of up to three hypervariable loops, known as the CDR loops. Here, we structurally and dynamically characterize the conformational diversity of an anti-GFP-binding nanobody by using molecular dynamics simulations in combination with experimentally derived data from nuclear magnetic resonance (NMR) spectroscopy. The NMR data contain both structural and dynamic information resolved at various timescales, which allows an assessment of the quality of protein MD simulations. Thus, in this study, we compared the ensembles for the anti-GFP-binding nanobody obtained from MD simulations with results from NMR. We find excellent agreement of the NOE-derived distance maps obtained from NMR and MD simulations and observe similar conformational spaces for the simulations with and without NOE time-averaged restraints. We also compare the measured and calculated order parameters and find generally good agreement for the motions observed in the ps–ns timescale, in particular for the CDR3 loop. Understanding of the CDR3 loop dynamics is especially critical for nanobodies, as this loop is typically critical for antigen recognition.  相似文献   
4.
5.
6.
Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood–brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.  相似文献   
7.
Acute myocardial infarction (AMI) is considered as one of the main causes of death, threating human lives for decades. Currently, its diagnosis relies on electrocardiography (ECG), which has been proven to be insufficient. In this context, the efficient detection of cardiac biomarkers was proposed to overcome the limitations of ECG. In particular, the measurement of troponins, specifically cardiac troponin I (cTnI) and cardiac troponin T (cTnT), has proven to be superior in terms of sensitivity and specificity in the diagnosis of myocardial damage. As one of the most life-threatening conditions, specific and sensitive investigation methods that are fast, universally available, and cost-efficient to allow for early initiation of evidence-based, living-saving treatment are desired. In this review, we aim to present and discuss the major breakthroughs made in the development of cTnI and cTnT specific biosensor designs and analytical tools, highlighting the achieved progress as well as the remaining challenges to reach the technological goal of simple, specific, cheap, and portable testing chips for the rapid and efficient on-site detection of cardiac cTnI/cTnT biomarkers in order to diagnose and treat cardiovascular diseases at an incipient stage.  相似文献   
8.
Obesity and colorectal cancer (CRC) are among the leading diseases causing deaths in the world, showing a complex multifactorial pathology. Obesity is considered a risk factor in CRC development through inflammation, metabolic, and signaling processes. Leptin is one of the most important adipokines related to obesity and an important proinflammatory marker, mainly expressed in adipose tissue, with many genetic variation profiles, many related influencing factors, and various functions that have been ascribed but not yet fully understood and elucidated, the most important ones being related to energy metabolism, as well as endocrine and immune systems. Aberrant signaling and genetic variations of leptin are correlated with obesity and CRC, with the genetic causality showing both inherited and acquired events, in addition to lifestyle and environmental risk factors; these might also be related to specific pathogenic pathways at different time points. Moreover, mutation gain is a crucial factor enabling the genetic process of CRC. Currently, the inconsistent and insufficient data related to leptin’s relationship with obesity and CRC indicate the necessity of further related studies. This review summarizes the current knowledge on leptin genetics and its potential relationship with the main pathogenic pathways of obesity and CRC, in an attempt to understand the molecular mechanisms of these associations, in the context of inconsistent and contradictory data. The understanding of these mechanisms linking obesity and CRC could help to develop novel therapeutic targets and prevention strategies, resulting in a better prognosis and management of these diseases.  相似文献   
9.
Metabolomics helps identify metabolites to characterize/refine perturbations of biological pathways in living organisms. Pre-analytical, analytical, and post-analytical limitations that have hampered a wide implementation of metabolomics have been addressed. Several potential biomarkers originating from current targeted metabolomics-based approaches have been discovered. Precision medicine argues for algorithms to classify individuals based on susceptibility to disease, and/or by response to specific treatments. It also argues for a prevention-based health system. Because of its ability to explore gene–environment interactions, metabolomics is expected to be critical to personalize diagnosis and treatment. Stringent guidelines have been applied from the very beginning to design studies to acquire the information currently employed in precision medicine and precision prevention approaches. Large, prospective, expensive and time-consuming studies are now mandatory to validate old, and discover new, metabolomics-based biomarkers with high chances of translation into precision medicine. Metabolites from studies on saliva, sweat, breath, semen, feces, amniotic, cerebrospinal, and broncho-alveolar fluid are predicted to be needed to refine information from plasma and serum metabolome. In addition, a multi-omics data analysis system is predicted to be needed for omics-based precision medicine approaches. Omics-based approaches for the progress of precision medicine and prevention are expected to raise ethical issues.  相似文献   
10.
Asthma is a heterogeneous disease in terms of both phenotype and response to therapy. Therefore, there is a great need for clinically applicable tools allowing for improved patient classification, and selection for specific management approaches. Some interventions are highly helpful in selected patients (e.g., allergen immunotherapy or aspirin desensitization), but they are costly and/or difficult to implement. Currently available biomarkers measurable in peripheral blood or exhaled air display many limitations for asthma phenotyping and cannot identify properly the specific triggers of the disease (e.g., aeroallergens or NSAID). The united airway concept illustrates the relevant epidemiological and pathophysiological links between the upper and lower airways. This concept has been largely applied to patient management and treatment, but its diagnostic implications have been less often explored. Of note, a recent document by the European Academy of Allergy and Clinical Immunology proposes the use of nasal allergen challenge to confirm the diagnosis of allergic asthma. Similarly, the nasal challenge with lysine acetylsalicylate (L-ASA) can be used to identify aspirin-sensitive asthma patients. In this review, we will summarize the main features of allergic asthma and aspirin-exacerbated respiratory disease and will discuss the methodology of nasal allergen and L-ASA challenges with a focus on their capacity to phenotype the inflammatory disease affecting both the upper and lower airways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号