Based on the proposed experimental method, the current spreading length of GaN-based light-emitting diodes (LEDs) was measured and analyzed for practical device design. In this study, Thompson's and Guo's models, which are categorized according to vertical series resistance (in particular, p-type contact resistance), were used to extract device parameters. It was shown that the measured current spreading length strongly depends on the injected current density. For LEDs fabricated with low-resistance p-type contacts, this behavior could be explained in terms of the accelerated current crowding with higher current densities occurring as a result of the reduced voltage drop across the junction, which is in good agreement with Thompson's relation. However, for LEDs fabricated with high-resistance p-contacts, unlike Guo's prediction, the measured current spreading length also showed a strong dependence on the injected current density. This was attributed to thermal heating at the p-contact, resulting in the reduction of the voltage drop across the p-contact and so junction voltage, which is also in agreement with Thompson's model. Based on the measured parameters and the design rule, efficient p-type reflectors, namely, hybrid reflectors were designed. Compared with conventional ones, LEDs fabricated with the hybrid reflectors exhibited better output power at a reasonable forward voltage, indicating that the proposed method is effective in understanding the actual current spreading and hence the practical design of high-efficiency LEDs. 相似文献
We present a full HD (1080p) H.264/AVC High Profile hardware encoder based on fast motion estimation (ME). Most processing cycles are occupied with ME and use external memory access to fetch samples, which degrades the performance of the encoder. A novel approach to fast ME which uses shared multibank memory can solve these problems. The proposed pixel subsampling ME algorithm is suitable for fast motion vector searches for high‐quality resolution images. The proposed algorithm achieves an 87.5% reduction of computational complexity compared with the full search algorithm in the JM reference software, while sustaining the video quality without any conspicuous PSNR loss. The usage amount of shared multibank memory between the coarse ME and fine ME blocks is 93.6%, which saves external memory access cycles and speeds up ME. It is feasible to perform the algorithm at a 270 MHz clock speed for 30 frame/s real‐time full HD encoding. Its total gate count is 872k, and internal SRAM size is 41.8 kB. 相似文献
The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen. 相似文献
Multimedia data, especially continuous media including video and audio objects, represent a rich and natural stimulus for
humans, but require large amount of storage capacity and real-time processing. In this paper, we describe how to organize
video data efficiently on multiple disks in order to support arbitrary-rate playback requested by different users independently.
Our approach is to segment and decluster video objects and to place the segments in multiple disks using a restricted round-robin
scheme, called prime round-robin (PRR). Its placement scheme provides uniform load balance of disks for arbitrary retrieval rate as well as normal playback,
since it eliminates hot spots. Moreover, it does not require any additional disk bandwidth to support VCR-like operations
such as fast-forward and rewind. We have studied the various effects of placement and retrieval schemes in a storage server
by simulation. The results show that PRR offers even disk accesses, and the failure in reading segment by deadline occurs
only at the beginning of new operations. In addition, the number of users admitted is not decreased, regardless of arbitrary-rate
playback requests. 相似文献
In this paper, we propose a computational framework to incorporate regularization terms used in regularity based variational methods into least squares based methods. In the regularity based variational approach, the image is a result of the competition between the fidelity term and a regularity term, while in the least squares based approach the image is computed as a minimizer to a constrained least squares problem. The total variation minimizing denoising scheme is an exemplary scheme of the former approach with the total variation term as the regularity term, while the moving least squares method is an exemplary scheme of the latter approach. Both approaches have appeared in the literature of image processing independently. By putting schemes from both approaches into a single framework, the resulting scheme benefits from the advantageous properties of both parties. As an example, in this paper, we propose a new denoising scheme, where the total variation minimizing term is adopted by the moving least squares method. The proposed scheme is based on splitting methods, since they make it possible to express the minimization problem as a linear system. In this paper, we employed the split Bregman scheme for its simplicity. The resulting denoising scheme overcomes the drawbacks of both schemes, i.e., the staircase artifact in the total variation minimizing based denoising and the noisy artifact in the moving least squares based denoising method. The proposed computational framework can be utilized to put various combinations of both approaches with different properties together. 相似文献
Recently, the capsule endoscope has been highlighted for the patient's convenience and the possibility of application in the small intestine. However, the capsule endoscope has some limitations in obtaining an image of the digestive organ because its movement depends only on the peristaltic motion. In order to solve these problems, it is necessary to determine the locomotive mechanism of the capsule endoscope. Therefore, the present authors have already proposed an earthworm-like robot, which has a locomotive mechanism. However, this mechanism should be designed so that the earthworm-like robot has a larger stroke than the critical stroke required to perform motion inside the small intestine. In this study, therefore, not only is the modelling of the locomotive process based on a biomechanical study presented but also the movement of the earthworm-like robot in the small intestine is simulated. Through the simulation process, the variation in the critical stroke with regard to the elastic modulus of the mesentery is investigated. Finally, from an in vitro test of the proposed robot, it is found that the experimental result is very similar to that of the simulation. Consequently, the present work will provide guidelines for designing an earthworm-like robot for diagnosis of the small intestine. 相似文献
Electromagnetic-actuated robotic systems have been studied recently for special purposes. Because these systems use external magnetic fields to control their robots, the robots can have simple structures and move with much freedom. In particular, these electromagnetic actuation (EMA) systems are being widely adopted for the actuation of biomedical mini-robots and microrobots for minimally invasive surgery (MIS) and diagnosis. We previously reported, as a feasible biomedical robot, the biomimetic swimming tadpole mini-robot, which can only swim above water. Indeed, the two-dimensional (D) plane swimming tadpole mini-robot is limited in its use because of its motility in the 2D plane. Therefore, this paper proposes a 3D swimming tadpole mini-robot that can move freely in water. First, in the proposed 3D swimming tadpole mini-robot, the buoyancy force was regulated for subaqueous swimming, and the permanent magnet was rearranged for precise movement. Second, to attain a 3D swimming motion, the actuation mechanism of the robot was developed using an EMA system. Finally, various experiments verified that the proposed 3D swimming tadpole mini-robot can swim freely in a 3D water environment. 相似文献
In this paper, we proposed a magnetically steerable guidewire device composed of two parts: steering part and feeding part. The steering part consists of a magnet attached to the end of a commercial guidewire and 2-pair Helmholtz coils, and the feeding part consists of a motorized stage and a device for holding the guidewire. In detail, the 2-pair Helmholtz coils generate a uniform magnetic field that can align the guidewire magnet in the region of interest (ROI) along a desired direction. In addition, the feeding part remotely controls guidewire insertion and the length of the flexible part of the guidewire extruded from a catheter. For accurate alignment at the end of the guidewire, we controlled the flexible length of the guidewire extruded from a catheter and the intensity and direction of the uniform magnetic field using the feed-forward method. In addition, to reduce alignment error due to unpredicted disturbances and friction effects between the test-bed and the guidewire, proportional-integralderivative control is introduced as a feedback control algorithm. Using the control algorithms, we demonstrated accurate actuation of the steerable guidewire device with a steering angle error of less than 0:5◦. We expect that the proposed steerable guidewire device can be applied to the development of a 3-D locomotive guidewire with position recognition for percutaneous coronary intervention (PCI).
Previous studies emphasized that e-businesses could increase sales with marketing strategies on shopping web sites that induce impulsive buying behavior, and lacked an empirical approach to problems caused by impulsive buying. This study proposes a research model that deals with online consumers’ impulsive buying behavior and empirically validates it. The results show that impulsive buying could have a strong impact on post e-commerce purchase intention and behavior such as actual behavioral return tendency of goods. 相似文献
We investigated the change in the structural and optical properties of InAs/InP quantum structures during growth interruption
(GI) for various times and under various atmospheres in metalorganic chemical vapor deposition. Under AsH3 + H2 atmosphere, the mass transport for the 2D-to-3D transition was observed during the GI. Photoluminescence peaks from both
quantum dots (QDs) and quantum wells were observed from the premature QD samples. The fully developed QDs showed the two distinct
temperature regimes in the PL peak position, full width at half maximum (FWHM) and wavelength-integrated peak intensity. The
two characteristic activation energies were obtained from the InAs/InP QDs: ∼10 meV for intra-dot excitation and 90 ∼ 110
meV for the excitation out of the dots, respectively. It was also observed that the QD evolution kinetics could be suppressed
in PH3 + H2 and H2 atmospheres. The proper control of GI time and atmosphere might be a useful tool to further improve the properties of QDs. 相似文献