全文获取类型
收费全文 | 57篇 |
免费 | 16篇 |
专业分类
化学工业 | 9篇 |
机械仪表 | 1篇 |
能源动力 | 2篇 |
无线电 | 32篇 |
一般工业技术 | 16篇 |
冶金工业 | 9篇 |
自动化技术 | 4篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2021年 | 5篇 |
2020年 | 6篇 |
2019年 | 6篇 |
2018年 | 6篇 |
2017年 | 5篇 |
2016年 | 7篇 |
2015年 | 3篇 |
2014年 | 3篇 |
2013年 | 2篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2000年 | 1篇 |
1998年 | 3篇 |
1997年 | 4篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1976年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有73条查询结果,搜索用时 12 毫秒
1.
Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2 下载免费PDF全文
Adriano Ambrosi Zdeněk Sofer Martin Pumera 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(5):605-612
MoS2 and other transition metal dichalcogenides (TMDs) have recently gained a renewed interest due to the interesting electronic, catalytic, and mechanical properties which they possess when down‐sized to single or few layer sheets. Exfoliation of the bulk multilayer structure can be achieved by a preliminary chemical Li intercalation followed by the exfoliation due to the reaction of Li with water. Organolithium compounds are generally adopted for the Li intercalation with n‐butyllithium (n‐Bu‐Li) being the most common. Here, the use of three different organolithium compounds are investigated and compared, i.e., methyllithium (Me‐Li), n‐butyllithium (n‐Bu‐Li) and tert‐butyllithium (t‐Bu‐Li), used for the exfoliation of bulk MoS2. Scanning transmission electron microscopy (STEM), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) are adopted for a comprehensive characterization of all materials under investigation. In addition, catalytic properties towards the hydrogen evolution reaction (HER) and capacitive properties are also tested. Different organolithium compounds exhibit different extent of Li intercalation resulting in different degrees of exfoliation. The inherent electrochemical behavior of MoS2 consisting of significant anodic and cathodic peaks as well as its capacitive behavior and catalytic properties towards hydrogen evolution reaction are strongly connected to the exfoliation compound used. This research significantly contributes to the development of large‐scale synthesis of electrocatalytic MoS2‐based materials. 相似文献
2.
Marilena Isabella Zappia Gabriele Bianca Sebastiano Bellani Michele Serri Leyla Najafi Reinier Oropesa‐Nuez Beatriz Martín‐García Daniel Boua David Sedmidubský Vittorio Pellegrini Zdenk Sofer Anna Cupolillo Francesco Bonaccorso 《Advanced functional materials》2020,30(10)
Gallium selenide (GaSe) is a layered compound, which has been exploited in nonlinear optical applications and photodetectors due to its anisotropic structure and pseudodirect optical gap. Theoretical studies predict that its 2D form is a potential photocatalyst for water splitting reactions. Herein, the photoelectrochemical (PEC) characterization of GaSe nanoflakes (single‐/few‐layer flakes), produced via liquid phase exfoliation, for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in both acidic and alkaline media is reported. In 0.5 m H2SO4, the GaSe photoelectrodes display the best PEC performance, corresponding to a ratiometric power‐saved metric for HER (Φsaved,HER) of 0.09% and a ratiometric power‐saved metric for OER (Φsaved,OER) of 0.25%. When used as PEC‐type photodetectors, GaSe photoelectrodes show a responsivity of ≈0.16 A W?1 upon 455 nm illumination at a light intensity of 63.5 µW cm?2 and applied potential of ?0.3 V versus reversible hydrogen electrode (RHE). Stability tests of GaSe photodetectors demonstrated a durable operation over tens of cathodic linear sweep voltammetry scans in 0.5 m H2SO4 for HER. In contrast, degradation of photoelectrodes occurred in both alkaline and anodic operation due to the highly oxidizing environment and O2‐induced (photo)oxidation effects. The results provide new insight into the PEC properties of GaSe nanoflakes for their exploitation in photoelectrocatalysis, PEC‐type photodetectors, and (bio)sensors. 相似文献
3.
Kierstin Torres Agnieszka Kuc Lorenzo Maschio Thang Pham Kate Reidy Lukas Dekanovsky Zdenek Sofer Frances M. Ross Julian Klein 《Advanced functional materials》2023,33(12):2211366
Understanding the stability limitations and defect formation mechanisms in 2D magnets is essential for their utilization in spintronic and memory technologies. Here, defects in mono- to multilayer CrSBr are correlated with structural, vibrational, and magnetic properties. Resonant Raman scattering is used to reveal distinct vibrational defect signatures. In pristine CrSBr, it is shown that bromine atoms mediate vibrational interlayer coupling, allowing for distinguishing between surface and bulk defect modes. Environmental exposure is shown to cause drastic degradation in monolayers, with the formation of intralayer defects. This is in contrast to multilayers that predominantly show bromine surface defects. Through deliberate ion irradiation, the formation of defect modes is tuned: these are strongly polarized and resonantly enhanced, reflecting the quasi--1D electronic character of CrSBr. Strikingly, pronounced signatures of spin-phonon coupling of the intrinsic phonon modes and the ion beam-induced defect modes are observed throughout the magnetic transition temperature. Overall, defect engineering of magnetic properties is possible, with resonant Raman spectroscopy serving as a direct fingerprint of magnetic phases and defects in CrSBr. 相似文献
4.
Stanislav Cichoň Petr Machá?Bohumil Barda Zdeněk Sofer 《Microelectronic Engineering》2011,88(5):553-556
This work is dealing with the influence of surface treatment on ohmic contacts to hexagonal N-type SiC with medium doping level. The contact materials were Ni and Ni2Si. The structures had to be annealed at high temperatures in order to reach ohmic behavior. A number of surface treatment methods were tested: wet cleaning, plasma etching, intentional oxidation with etching, H2 annealing and their combinations. After some types of cleaning, the SiC surface was immediately analysed using the XPS method. The results of the analyses showed that the composition of the surface was not much influenced by these treatments. At lower annealing temperatures (approx. up to 850 °C) the prepared contacts showed Schottky behavior with large scatter of parameters. After annealing at approx. 960 °C, where the onset of ohmic behavior is expected, the structures were truly ohmic and of good parameters. Cleaning methods had just a negligible influence on the electrical parameters of the ohmic contacts. An explanation for these observed facts is suggested: Although - already on the basis of the XPS results - we could speak about a negligible influence of the cleaning onto the contact parameters, there might come across also other mechanisms coming from interaction of contact materials with SiC, which caused similar behavior of ohmic contacts on differently treated surfaces. 相似文献
5.
Layered metal trichalcogen phosphites, also entitled as metal phosphorus chalcogenides (MPX3), have regained abundant interest, not only due to their magnetic properties, but also due to promising performances in energy storage and conversion. Herein, two different layered manganese trichalcogen phosphites, MnPX3 (X = S, Se), are synthetized and submitted to shear force exfoliation. Structural and morphological characterization point to the fact that exfoliated MPX3 (exf‐MnPX3) undergo mainly a downsizing process, alongside with delamination. Layered exf‐MnPSe3 has the lowest onset potential for hydrogen evolution reaction (HER) in both media. In acidic media, a comparative improvement of 350 mV is observed for exf‐MnPSe3 relative to the bulk MnPSe3. The materials stability as electrocatalysts is also tested for HER in a wide pH range, in which exf‐MnPSe3 has a good stability after 100 cycles. The improved performance of exf‐MnPSe3 can be correlated with the lower relative abundance of Mn and P oxides detected in the Mn 2p and P 2p core levels. Such materials show a great promise for future in a hydrogen‐based economy. 相似文献
6.
Petr Šimek Zdeněk Sofer Ondřej Jankovský David Sedmidubský Martin Pumera 《Advanced functional materials》2014,24(31):4878-4885
Graphene papers have a potential to overcome the gap from nanoscale graphene to real macroscale applications of graphene. A unique process for preparation of highly conductive graphene thin paper by means of Ar+ ion irradiation of graphene oxide (GO) papers, with carbon/oxygen ratio reduced to 100:1, is presented. The composition of graphene paper in terms of carbon/oxygen ratio and in terms of types of individual oxygen‐containing groups is monitored throughout the process. Angle‐resolved high resolution X‐ray photoelectron spectroscopy helps to investigate the depth profile of carbon and oxygen within reduced GO paper. C/O ratios over 100 on the surface and 40 in bulk material are observed. In order to bring insight to the processes of oxygen removal from GO paper by low energy Ar+ ion bombardment, the gases released during the irradiation are analyzed by mass spectroscopy. It is proven that Ar+ ion beam can be applied as a technique for fabrication of highly reduced graphene papers with high conductivities. Such highly conductive graphene papers have great potential to be used in application for construction of microelectronic and sensor devices. 相似文献
7.
WS2 Nanoparticles: Bipolar Electrochemical Synthesis of WS2 Nanoparticles and Their Application in Magneto‐Immunosandwich Assay (Adv. Funct. Mater. 23/2016) 下载免费PDF全文
8.
9.
Sorption of aniline by montmorillonite was studied by infra-red, X-ray diffraction and differential thermal analysis methods. The amount of aniline sorbed and the type of bonding depend upon the interlayer cations: anilinium, H+- and Al3+- give anilinium aniline ions, NH44-ammonium aniline ions, alkalis and alkaline earths except Cs are bonded to aniline through water bridges and transition metal cations are coordinated to aniline partly directly and partly through water bridges. Sorption does not occur in the complete absence of water. 相似文献
10.