排序方式: 共有94条查询结果,搜索用时 15 毫秒
91.
92.
针对常规Elman神经网络容易陷入局部最优、泛化能力不足等缺点,提出一种混合小波包变换和纵横交叉算法(CSO)优化神经网络的短期风电预测新方法。该混合方法首先利用小波包变换将风电功率时间序列分解成多个不同频率的子序列,然后采用CSO优化后的神经网络(CSO-ENN)对各分量进行提前24 h预测,最后叠加各子序列的预测值,得出实际预测结果。在实例分析中,利用某风电场实际运行数据进行仿真验证。结果表明:新模型的预测精度明显优于其他混合方法和风电场提供的日前预测结果。 相似文献
93.
94.
针对FCM(模糊C-均值聚类)在变压器故障诊断中的不足,提出采用纵横交叉算法优化FCM(CSOFCM)聚类来进行故障诊断。溶解气体分析与FCM相结合,能有效提高变压器故障诊断的准确率,但FCM存在聚类结果不稳定和容易陷入局部最优等问题。而纵横交叉算法是一种基于种群的随机搜索算法,在算法中首次提出了维局部最优概念和纵横交叉双搜索思想。实验证明,相比其它主流群智能优化算法,CSO算法在解决维数灾问题和收敛精度问题方面取得了较大突破,能有效克服局部最优的问题。新诊断模型有效弥补了单一诊断法的不足,拥有全局收敛性强和处理模糊信息的能力。实例分析表明,该方法与传统FCM相比,能获得更优的聚类中心,有效提高了变压器故障诊断的准确性和快捷性。 相似文献